

Using the EM27/SUN FTS for open path measurements of GHGs

COCCON community telco Oct-25-2022

Presenter: PD Dr. Frank Hase, IMK-ASF (frank.hase@kit.edu)

www.kit.edu

KIT - The Research University in the Helmholtz Association

The EM27/SUN: a wide range of applications

Travel standard for TCCON

Arrival Heights (NIWA, Pollard)

FRM4GHG / ESA travel standard unit (NIES, UoT, ..., TUM, KIT)

Supplement TCCON sites (satellite validation)

e.g. Mexico, Namibia, India, ...

Quantify localized sources

Image: constraint of the second se

Berlin

www.kit.edu

2 24 10-20 20 Research University in the Helmholtz Association

There is a well-developed state-of-art & dedicated setups, why re-investigate?

Numerous EM27/SUN spectrometers are around, aim at co-use in their current solar absorption configuration for OP measurements as well:

- Use available spectrometer during night time and overcast condts
- Alternating solar absorption + OP: "In-situ" measurements of PBL concentrations in the same unit system as column-integrated measurement.
- Excellent stability & consistency of gas column retrievals from C₂H₂ cell demonstrated by COCCON (Alberti et al., 2022; repeatability <0.001%, consistency ~0.002%)!

FTIR open-path measurements

Considerable work has been done on FTIR OP measurements by different investigators, e.g., UoW, UHD, UB, ...

Professional OP NIR FTS setup for GHG measurements (Deutscher et al., 2021):

FTIR open-path measurements

Results (Deutscher et al., 2021): 2 x 1500 m, 12" telescope, 60 cm x 62 cm retroreflector array

Gas fitted	Interfering species	Spectral region (cm ⁻¹)
O ₂	H ₂ O	7790-7960
CO ₂	H ₂ O	4800-5050
CH ₄	H ₂ O	5885-6150
H ₂ O, HDO	CO ₂	4910-5080
CO	H ₂ O	4260-4310
N ₂ O	CH_4, H_2O	4300-4460

(T fit performed in CO₂ window)

Measurement	Instrument setup	Signal-to-noise	Repeatability (1σ)			
period	(path, reflector, telescope)	ratio (SNR)	CO2 (ppm)	CH4 (ppb)	CO (ppb)	N2O (ppb)
1	600 m, gold, 10 in.	2050	0.74	8.5	7.0	8.4
2	600 m, glass, 10 in.	6400	0.60	14.8	24.2	30.9
3	1110 m, glass, 10 in.	3750	0.38	3.8	27.1	35.8
4	1500 m, glass, 10 in.	2300	0.46	3.9	28.5	35.6
5	1500 m, glass, 12 in.	3200	0.28	2.1	17.1	21.8
Ref*	1500 m, quartz, 12 in.	750	1.7	21	_	-

* Deployment at Heidelberg (Griffith et al., 2018).

We decided to use this topic for KSOP master thesis (6 months):

Master student: Uyen Nguyen

Supervisors: C. Alberti, F. Hase Examiner: J. Orphal

The following material is a condensed version of the contents of her thesis.

VIS / IR searchlight AEG BSW 301 (Leopard / Marder tank) Off-axis paraboloid 28 x 28 cm²

Very basic approach, no beam expander, EM27/SUN FTS characteristics: beam diam 6 mm FOV 0.27°

5 cm diameter source: 9 m 28 cm diameter source: 58 m

Cons of remote source:

- Optical path equals geometric path (no doubling)
- Power at source location required
- Alignment of source required
- (Signal contribution from scattered sunlight)

Pros of remote source:

- + No short-path signal
- + Much higher signal level than fiber coupling
 - (4x advantage over BS)

Open-path measurements:

- 7th floor of the IMK-ASF Institute (vented)
- Coordinates: 49.094 °N, 8.4336 °E
- 134 m a.s.l (30 m above ground)
- 22 m path length

ICOS reference:

- Cavity ring-down spectrometer (CRDS, Picarro, model G2301)
- ✤ Coordinates: 49.092 °N, 8.4249 °E
- 110 m a.s.l (200 m above the ground)
- Measurement levels: 30 / 60 / 100 / 200 m
- Pressure reference (2.5 m above ground)

460 455

Measurement session 27-29 May 2022 (46 hours)

Demonstration of improvised beam expander: 80 mm free diameter, 8x magnification 28 cm diameter source: up to 390 m (used: 115 m)

Note: solar tracker can be used for fine alignment!

www.kit.edu

Note channeling in

spectral residuals:

AR!

Lens telescope with VIS

Outlook: use larger Cassegrain beam expander, e.g. 30x magnification (~ 20 cm diameter required, ~ 1kEUR) 28 cm diameter source: up to 630 m 50 cm diameter source: up to 2.0 km

(~ 1 km required for measuring CH_4 , factor ~ 50 weaker)

Carlos Alberti Thomas Blumenstock Darko Dubravica Lena Feld Matthias Frey (NIES) Michael Gisi (OHB) Jochen Groß Benedikt Herkommer Matthias Schneider Qiansi Tu (Tongji Univ.)

+ external COCCON collaborators!

CO channel extension

aperture stop

secondary fieldstop + detector 0,4

0,3

0,2

0,1

0,0

signal

90 deg off-axis

mirror

F. Hase et al."Enhancing the capabilities of a portable FTIR spectrometer for greenhouse gas measurements...", AMT, 2016

wavenumber [cm⁻¹]