COCCON activities during the La Palma volcano eruption: gases and aerosols observations

N. Taquet, O. García, R. Campion, T. Boulesteix, W. Stremme, C. Rivera, M. Grutter, A. Barreto, O. Álvarez, S. León-Luis, R. Ramos, V. Carreño, F. Almansa, F. Hase, T. Blumenstock, M. Schneider noemie@atmosfera.unam.mx, ogarciar@aemet.es

COCCON Meeting, 23rd August 2022

La Palma Volcanic Eruption

La Palma Volcanic Eruption

Total SO2 amount released: 1,84 Mt

Phase I: alternating **explosive and effusive activity**, emissions at different vents. **Phase II:** less energy in the volcanic system, more **effusive** activity (more lava flows, less aerosol and gas emissions)

La Palma Volcanic Eruption

AEMet Deployment at La Palma

AEMet Deployment at La Palma

- Roque de los Muchachos (2400 m): ARCADE Raman Lidar at Cherenkov Telecospe Array + Sun-photometer (AERONET)
- El Paso (700 m): Prototype Vaisala CL61 ceilometer
- **Tazacorte** (140 m): Surface SO2, O3, aerosols, MPL lidar (MPLNet+e-profile), all-sky cameras, ZEN radiometer, ash deposition, meteo
- Airport (60 m): Vaisala CL51 ceilometer (e-profile), meteo
- Fuencaliente (680 m): sun-lunar photometer (AERONET), CHM15k Luff ceilometer (e-profile), all-sky camera, EM27/SUN
- Los Llanos (295 m): meteorological sondes
- Angeles Alvariño (ship): low-cost air quality products

AEMet Deployment at La Palma

volcanic plume and the **vertical distribution in real time**.

DOAS & EM27/SUN Measurements at FUE station

Volc. species: HCl, HF, CO₂, CO and SO₂ Measurement days: <u>DOAS</u>: 33 (from 10/10 to 10/12) <u>EM27/SUN</u>: 59 (from 25/09 to 14/12) + 14 (post eruptive) Days capturing volcanic plume: 21

(At IZO: Days capturing volcanic plume: 9 + EM27 measurements: 4)

EM27/SUN: Spectral range: (4000 to 5500 cm⁻¹) & (5500 to 12500 cm⁻¹) Res: 0.5 cm⁻¹

DOAS Model: Avantes ULS 2048 Spectral range: 270-425 nm

Res: 0.4 nm

DOAS Measurements and processing

Measurements performed with **MobileDOAS software** (developed by BIRA-IASB) **Exposition Time:** Manually adjusted **Integration time:** ~30 sec

QDOAS processing:

- **Reference**: 1 Measured spectrum without volcanic signature & SZA close to 0.0
- Settings: Based on Butz et al. (2017)

Target Gas	Spectral windows (nm)	Interfering gases	
SO ₂	312.0-326.8	O ₃	
OCIO, BrO (330.6–356.2) nm: too much noise			

Conversion of Slant Col. to Vert. Col: VC_SO₂=SIC_SO₂/ airmass

with airmass= 1/cos (SZA)

Example of SO₂ fit from FUE DOAS solar absorption measurements

EM27/SUN data processing: HCl, HF, CO₂, CO

Using PROFFAST v2.0

Gas	Spectral windows (cm ⁻¹)	Interfering gases
HCI (HIT2012)	(5697.0 - 5769.0) (5684.0 – 5795.0) (*1)	H ₂ O (HIT2020) <i>,</i> CH ₄ (HIT2020)
HF (HIT2012)	(7765.0 - 8005.0)	H ₂ O (HIT2020), CO ₂ (HIT2020), O ₂ (HIT2020)
CO ₂ (HIT2020)	(6173.00,6390.00)	H ₂ O, CH ₄ (HIT2020)
CO (HIT2020)	(4208.7,4318.8)	H ₂ O, HDO, CH ₄ (HIT2020)

Retrieval Strategies

HCI & HF:

- Scaling of the lower troposphere (0.630 2.7 km) & atmospheric contribution neglected
- pT files and VMR a priori from MAPs files GGG2014 (factor of 1.00065 with GGG2020)

Based on (*1) Butz et al. (2017) & Mexico's settings

Validation HF & HCl at Popocatépetl: EM27-SUN vs IFS 125HR

HCI EM27/SUN (5697.0 - 5769.0) cm⁻¹ HCI IFS 125HR : 12 independent windows in (2727.0 – 2796.5) cm⁻¹ (Taquet et al., 2019)

HF EM27/SUN (7765.0 - 8005.0) cm⁻¹ **HF IFS 125HR** : (3999.0 - 4003.5) & (4036.5-4041.0) cm⁻¹ (*Taquet et al., 2019*)

EM27/SUN Measurements and processing: HCl, HF, CO₂, CO

Using PROFFAST v2.0

Gas	Spectral windows (cm ⁻¹)	Interfering gases
HCI (HIT2012)	(5697.0 - 5769.0) (5684.0 – 5795.0) (*1)	H ₂ O (HIT2020), CH ₄ (HIT2020)
HF (HIT2012)	(7765.0 - 8005.0)	H ₂ O (HIT2020), CO ₂ (HIT2020), O ₂ (HIT2020)
CO ₂ (HIT2020)	(6173.00,6390.00)	H ₂ O, CH ₄ (HIT2020)
CO (HIT2020)	(4208.7,4318.8)	H ₂ O, HDO, CH ₄ (HIT2020)

Retrieval Strategies

Volcanic CO₂ & CO : Retr. with COCCON settings + post-correction to remove the atmospheric contribution

Determination of Volcanic CO₂ columns

- (1) Daily selection of XCO_2 data without volcanic contribution (XHCl < 0.002 ppm)
- (2) Determination of a P function fitting the selected spectra

(3) Determination of Volcanic CO₂ VCD:

 $\Delta XCO_2 = XCO_2 - P$ $CO_{2VOLC} = \Delta XCO_2 \cdot [O_2] / 0.20942$

Based on Butz et al. (2017)

When IZO data exists: Use of XCO_{2 IZO} to refine the P function

Determination of Volcanic CO columns

13/10/2021 FUE

Volcanic columns at FUE and IZO: SO₂, HCl, HF, CO₂, CO

Volcanic IFS 125HR columns at IZO: SO₂, HF, HCl, CO

PROFFIT – 2022 (Standard NDACC and optimized products)

Days capturing volcanic plume: 9

Volcanic columns at FUE and IZO: SO₂, HCl, HF, CO₂, CO

Preliminary intercomparison EM27/SUN & IFS 125HR at IZO: HCI Columns

Different vertical sensitivities have not been considered (next step)

Factor HCl_{HighRes}/ HCl_{LowRes}: 0.8

Preliminary intercomparison EM27/SUN & IFS 125HR at IZO: HF Columns

Examples of Volcanic plume detection at FUE and IZO

20

Calculation of ratios from daily correlation plots

COvolc/CO₂volc

Variability of the volcanic gas ratios during the eruption

Variability of the volcanic gas ratios during the eruption

Variability of the volcanic gas ratios during the eruption

Aerosol Retrievals from EM27/SUN

Aerosol products can be used as **proxy for atmospheric chemistry** (CO/SO₂: 2 ranges = 2 different sources Volcanic CO or GHG/biomass burning (due to lava flows))

Spectral Aerosol Opticl Depth (AOD)

8 Micro-Windows (very high solar transmission) Absolute calibration: continuous Langley-Plot (IZO)

Linear degradation rate of ~0.5%month⁻¹! (exposed parts of the EM27/SUN solar tracker)

Aerosol Retrievals from EM27/SUN

Validation with Co-located AERONET AOD

Excellent correlation for all the AOD range and three common channels

EM27/SUN AOD shows a positive bias of 6% and 2% for 870 and 1020 nm (calibration, gases correction, detector?)

Summary and Outlook

(1) Different tests are still pending, however the **excellent agreement** between DOAS, EM27/SUN, IFS 125HR points to reliable volcanic SO2, HCl, HF, CO, CO2 measurements!!

(2) Volcanic gas ratios (CO2/SO2, HCI/SO2, HF/SO2, CO/SO2) allow the evolution of the volcanic process to be characterized and estimate the total gas emissions:

Variation of $CO_2/SO_2 \& HCI/SO_2$ with the seismic signal CO/SO_2 : 2 ranges = 2 different sources (volcanic CO or GHG & biomass burning due to lava flows)?

Total SO₂ amount released: 1.84 Mt HCl/SO₂ mean = 0.03 (mass ratio) CO_2/SO_2 mean= 26 (mass ratio)

Estimated HCl emissions: ~ 40 kt Estimated CO_2 emissions : ~ from 11 to 30 Mt (maximum estimation)

(3) Low-resolution **COCCON instruments** are suitable for detecting the **aerosol** NIR broadband signal and for retrieving **precise gas concentrations** (multi-parameter capability)

Many thanks!!!!

