

Munich Column Carbon Monitoring network (MUCCnet)

Jia Chen and Florian Dietrich

Technical University of Munich

TUM Department of Electrical and Computer Engineering

Environmental Sensing and Modeling

Contact: Jia Chen (jia.chen@tum.de), Florian Dietrich (flo.Dietrich@tum.de)

Munich Greenhouse Gas Observation Landscape in 2015

Munich Greenhouse Gas and Air Quality Landscape Today

- Integrated observation approach
 - MUCCnet
 - Air quality sensor network
 - OCO2 target modes, OCO3
 SAM mode

MUCCnet: Differential Column Measurements

(Chen et al., 2016)

- > **Approach**: Emission $\propto C_{downwind} C_{upwind}$
- Species:
 - ➢ Carbon dioxide: CO₂
 - ➢ Methane: CH₄
- > Advantages:
 - Insensitive to boundary layer height dynamics
 - Representative for regional emissions
- > Application:
 - > Monitoring urban GHG emissions over long-term
 - Validating satellites

Fig. 1: Principle of the differential column measurements

Chen et al.: Differential column measurements using compact solartracking spectrometers. Atmospheric Chemistry and Physics, 2016

Patented Sensor System

(Heinle and Chen, 2018; Dietrich et al. 2021)

- Fully-automated sensor systems:
 - Fourier transform spectrometer + sun tracker
 - Smart system protect the spectrometer:
 Sunny → measure, Rainy → cover close
- > Easy to transport, mobile deployable
- Deployed in Munich (5 stations), Finland and Uganda

→ Our system reduces the personnel costs to a minimum and increases the amount of measurement data to a maximum

J. Chen & F. Dietrich

Heinle and Chen: Automated Enclosure and Protection System for Compact Solar-Tracking Spectrometers. Atmos. Meas. Tech., 2018 *Dietrich et al.:* MUCCnet: Munich Urban Carbon Column network, Atmos. Meas. Tech., 2021.

Satellite validation north of the polar circle (in collaboration with Frank Hase)

Tu et al.: Intercomparison of atmospheric CO2 and CH4 abundances on regional scales in boreal areas using CAMS analysis, COCCON spectrometers, and Sentinel-5 Precursor satellite observations. Atmos. Meas. Tech., 2020

M

OCO-2 SAMPLES (rather than map the Earth

GHG Monitoring – A Multiscale Approach

8

Power Plant South Study (Natural Gas-fired → Potential methane source) *Toja-Silva, Chen et al. (2017)*

Gas-Fired Power Plant – CFD Simulation (OpenFoam)

Toja-Silva, Chen et al. (2017)

- Wind field: Navier-Stokes equations (meter scale)
- Concentration field: convection-diffusion equations
- \rightarrow Microscale CFD model to convert measured concentration to emission strength

Toja-Silva et al.: CFD simulation of CO2 dispersion from urban thermal power plant: Analysis of turbulent Schmidt number and comparison with Gaussian plume model and measurements., 2017

J. Chen & F. Dietrich

Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Munich Carbon Column Network (MUCCnet)

(Dietrich et al., 2021)

- 5 sensor systems distributed in and around Munich:
 - Always at least one upwind/downwind station for arbitrary wind conditions
 - Center station is the downwind of half the city
- Fully automation important for permanent monitoring
- Application: unknown sources discovery, emission monitoring, satellite validation

Measurement Results – Seasonal Cycle

(Dietrich et al., 2021)

- > Center station is operating since summer 2015
- Capturing the seasonal cycle and increasing trend of CO₂ (~2.4 ppm per year)
- No measurement gap in winter 2019/2020 thanks to the full automation.

\rightarrow Inner-city station captures the seasonal cycle of CO₂ for the last 4.5 years very well

Harvard AEC Seminar | Jia Chen

Measurement Results – CO₂ Concentration Enhancements

 \rightarrow Sensor network can sense the GHG concentration gradients to quantify the emissions

Jia Chen | Feb 2, 2021

Unknown emission sources

1 day during Oktoberfest

Oktoberfest Investigation 2018

(*Chen et al. 2020*)

Results – emission and leakage rate

(Chen et al. 2020, Lober et al. 2021)

CFD simulation

- Total emission: 6.7 μg/m²/s
 (vs. city of Munich: 0.3 μg/m²/s)
- > 90% CH_4 emission from gas appliances
- Total gas consumption: ~201 000 m³
- ➤ Loss rate: ~ 1.1%

\rightarrow Leakage rate might change the climate balance of different energy sources

J. Chen & F. Dietrich

Chen et al.2020: Methane emissions from the Munich Oktoberfest. Atmospheric Chemistry and Physics, 2020 Lober et al. 2021: Computational Fluid Dynamics Model to Simulate Methane Dispersion at Oktoberfest, Earth and Space Science Open Archive, 2021

Framework for Estimating Emission (Bayesian Inversion) (Jones et al. 2021)

$$\min_{x,b} [(Hx + Bb - y)^T S_{\epsilon}^{-1} (Hx + Bb - y) + (x_a - x)^T S_a^{-1} (x_a - x) + y_{\epsilon} observations + y_{\epsilon}$$

y: observations H: footprint matrix x: emissions x_a: prior emissions B: background influence matrix b: background concentration S: error covariance matrix

\rightarrow Approach: Minimizing a cost function to determine the emissions and the background influence

Jones et al.: Assessing Urban Methane Emissions using Column Observing Portable FTIR Spectrometers and a Novel Bayesian Inversion Framework, Atmos. Chem. Phys., 2021

Backward Particle Simulation

> Particle backwards trajectory simulation (STILT) produces the footprints and background influence matrix for the inversion

Emission Results of Munich

 \rightarrow Emission number about 1.2 times higher than the emission inventory (using long-term dataset)

 \rightarrow Good correlation between measured and modelled concentrations

J. Chen & F. Dietrich

Munich CH4 emission assessment using a Bayesian inverse modeling approach, in preparation 23

 $R^2 = 0.918$

1.870

1.865 [udd] 1.860

Model

Satellite validation using MUCCnet (in collaboration with M. Kiel and G. Osterman)

Measurement data accessible online

https://atmosphere.ei.tum.de/

Hamburg Campaign (supported by the UN)

Munich \rightarrow Pilot city of European Green Deal

- Munich was selected to be one of the three pilot city (+ Paris and Zurich) of the European Green deal (TUM: Science lead Munich)
- Measurements to be established:
 - Ground-based remote sensing system
 - Street level sensors
 - Roof level sensors
 - Co-species
 - > 1 tall tower eddy covariance station
 - Airborne measurements (on board Lufthansa)

ICOS

Max Planck Institute

for Biogeochemistry

