

Monitoring of Atmospheric composition and Greenhouse gases through multi-Instruments Campaigns

Cyril Crevoisier (<u>cyril.crevoisier@lmd.ipsl.fr</u>)
Caroline Bès (<u>caroline.bes@cnes.fr</u>)

https://magic.aeris-data.fr/

22 July 2021

Monitoring of Atmospheric composition and Greenhouse gases through multi-Instrument Campaigns

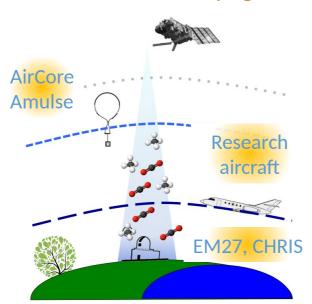
The MAGIC initiative: Established in 2017...

PI: Cyril Crevoisier, LMD-CNRS

CNES contact : Caroline Bès

Two main objectives:

- To better understand atmospheric distribution and emissions of CH₄, CO₂ and related variables
- To validate current space missions (e.g. OCO-2, GOSAT-2, S5P, IASI) and prepare future ones (e.g. Merlin, MicroCarb, IASI-NG)


How?

- By organizing annual campaigns and network measurements and building numerical tools.
- By combining ground-based, airborne (aircraft, balloon) and satellite observations.
- By testing satellite airborne demonstrators.

7 entities involved

Consortium for total column measurements

Network for vertical profiling

OPGC Observatoire

SAFIRE

LSCE

GSMA

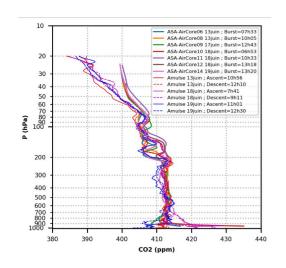
PRMA★

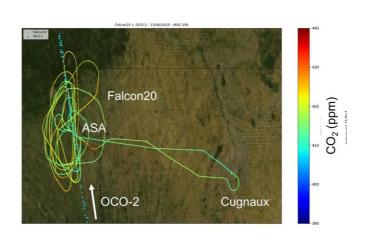
Monitoring of Atmospheric composition and Greenhouse gases through multi-Instrument Campaigns

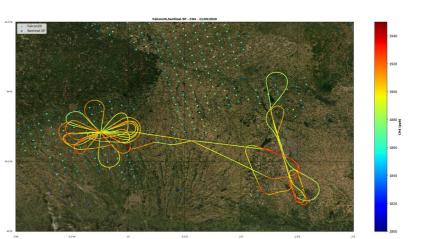
Already 3 campaigns: May 2018, June 2019, September 2020

MAGIC-CoMet 2018

MAGIC 2019

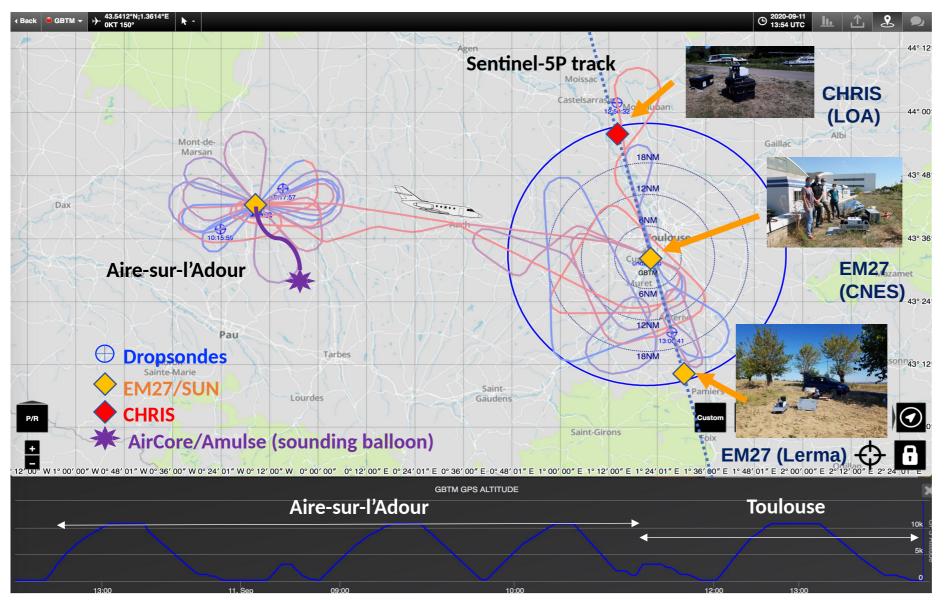



MAGIC 2020



Primary objectives:

- Comparison and validation of various techniques.
- Validation of various space missions: IASI, Sentinel-5P and OCO-2



More information: https://magic.aeris-data.fr/

MAGIC 2020: September 11th: all instruments deployed

Satellites:

Sentinel-5P overpass: 12:55 UTC

IASI-A overpass: 9:28 UTC **IASI-C** overpass: 9:56 UTC

Falcon20:

1er flight : 8:30-10:45 over ASA ☐ coloc

IASI-A/C et ballons.

2e flight: 12:15-13:45 over Francazal □

coloc Sentinel-5P

Balloon lauches from ASA (~1h30 ascent + 45mn descent):

AirCore at 08:00 : coloc IASI-A/C

(descent)

Amulse at 09:15 : coloc IASI-A/C

(ascent)

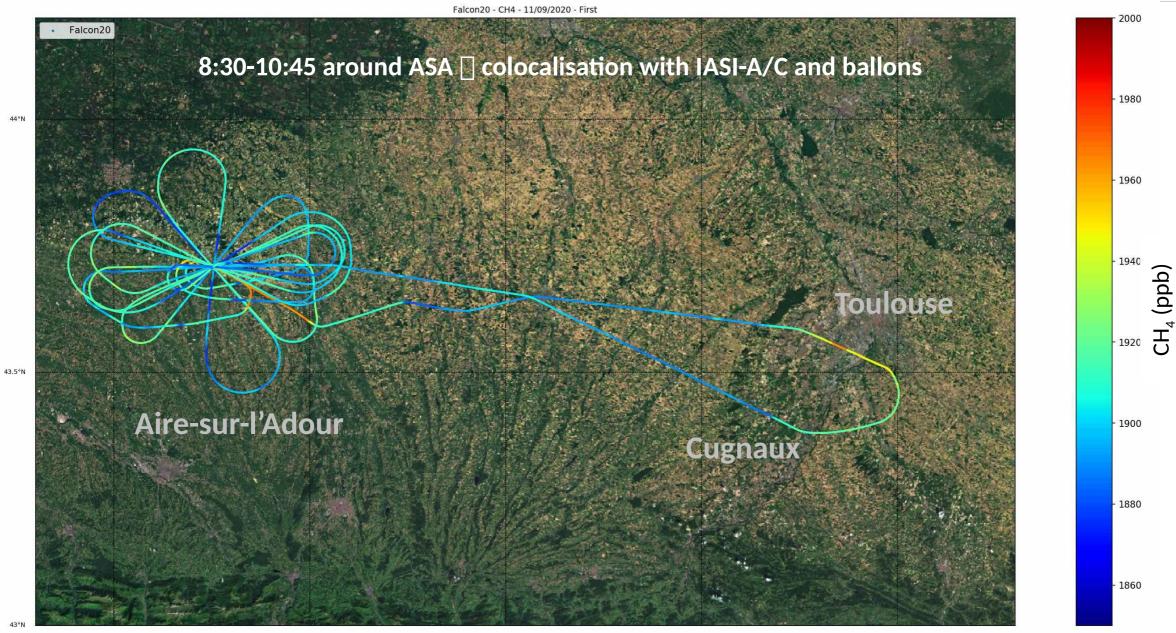
AirCore (descent) à 11:00 : coloc S5P

Amulse at 12:45 : coloc S5P (ascent)

AirCore à 14:00 (landing around 16h).

FTS: continuous measurement

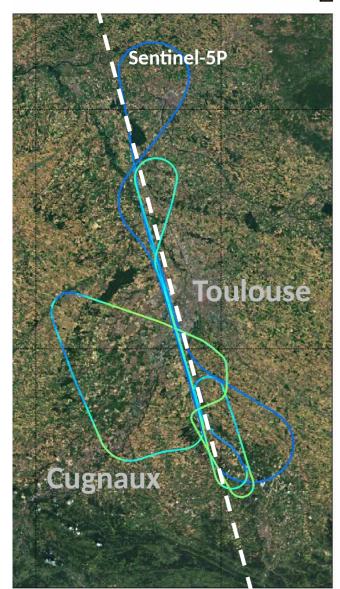
GSMA: ASA - 7:00-15:00

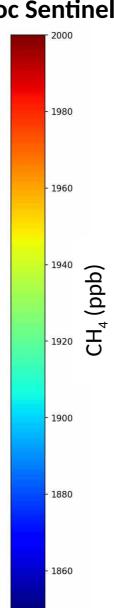

CNES: Francazal - 8:00-15:00

LOA: North (Montech) - 10:00-15:00

LERMA: South (Caujac) - 10:00-15:00

MAGIC2020: Falcon20 first flight

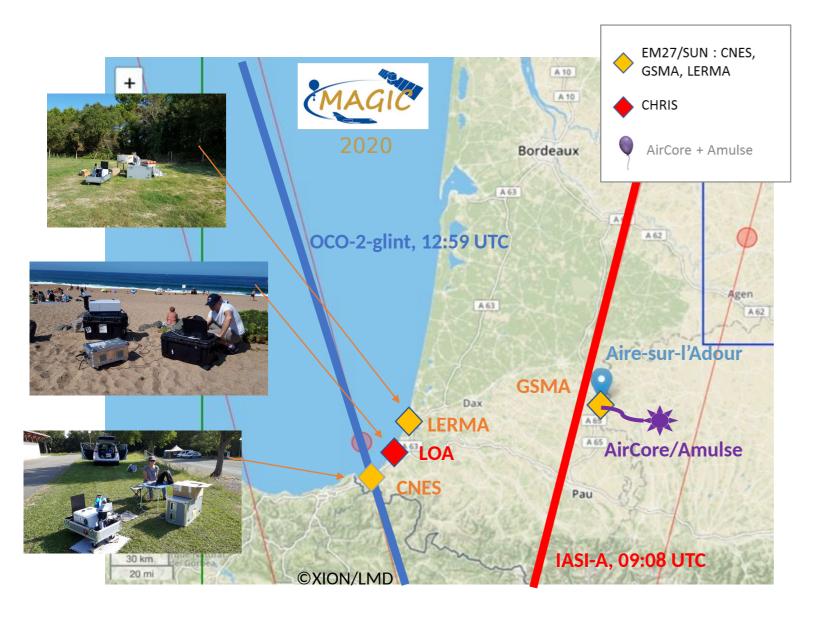




MAGIC2020: Falcon20 second flight and balloon launches

12:15-13:45 around Toulouse ☐ coloc Sentinel-5P

Successive balloon launches at ASA



MAGIC 2020: September 12th, Validation of OCO-2 in glint mode

OCO-2 overpass: 12:59 UTC

IASI-A overpass: 9:08 UTC

Balloons launches from ASA:

AirCore à 08:00 : coloc IASI-A (descent)

Amulse à 09:00 : coloc IASI-A (ascent)

AirCore à 12:00 : coloc OCO-2 (descent)

Amulse à 13:00 : coloc OCO-2 (ascent)

FTS: continuous measurement

GSMA: ASA - 7:00-15:00

CNES: Hendaye – 10:00-15:00

LOA: Anglet- 10:00-15:00

LERMA: Vieux Boucau - 10:00-15:00

+ 13th September

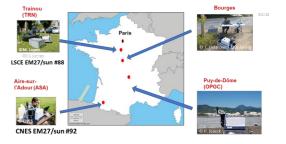
GOSAT1 overpass with target mode

over ASA: 13:46

GOSAT2 overpass with target mode

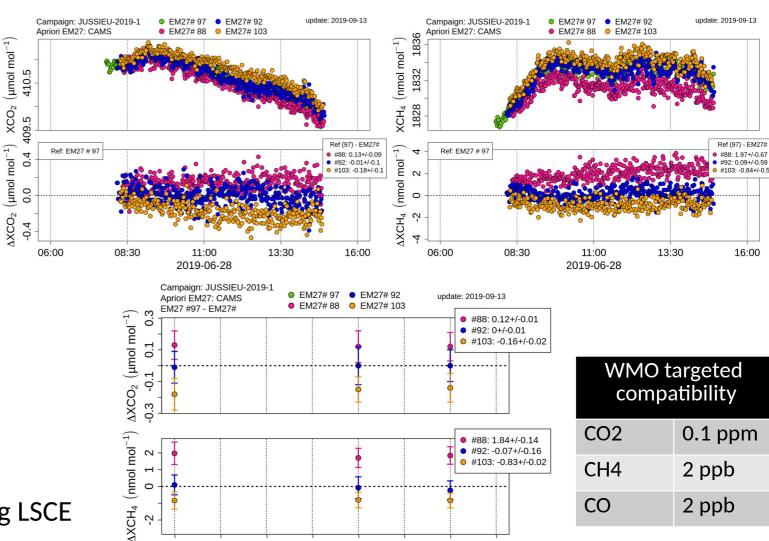
over ASA: 13:19

Working group FTS for MAGIC



- All part of the Collaborative Carbon Column Observing Network initiated by KIT
- PROFFAST software for GHG retrieval
- Use of others retrieval codes, as the 4Artic code (based on optimal estimation) which will be used for the MicroCarb
- Development of a test bench by LOA for radiometic calibration
- Development of a set up to measure ILS of all the EM27 involved in Magic (LERMA)
- We started <u>regular measurements</u> from several sites in France to:
 - ☐ Train with the EM27 instrument
 - ☐ Train with satellite overpasses
 - Establish temporal series
- Greg Osterman kindly sends CNES the forecast of OCO-2 observations over France

EM27 intercomparison in Paris (Jussieu – July 2019)



Set up LERMA

Processing LSCE

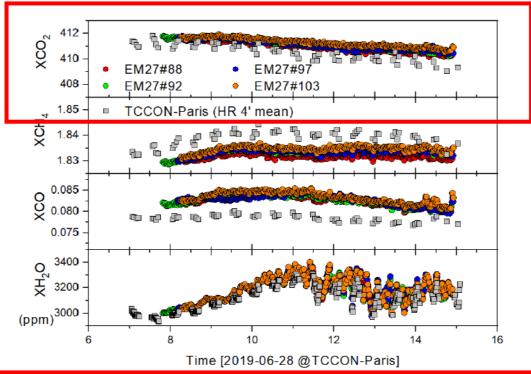
2019-06-28

2019-06-30

2019-07-02

2019-07-04

2 EM27 intercomparison over time


- Trainou [2 days, sept 2018]
- $\Delta XCO2 = XCO2 (EM27#88-LSCE) XCO2 (EM27#92-CNES) = 0,12 ppm +/- 0,1 ppm$
- Δ XCH4 = XCH4 (EM27#88) XCH4 (EM27#92) = 1,6 ppb +/- 0,58 ppb
 - Jussieu [3 days, oct 2018]
- $\Delta XCO2 = 0.18 \text{ ppm} + /-0.12 \text{ ppm}$
- $\Delta XCH4 = 1.7 \text{ ppb} + /- 0.78 \text{ ppb}$
 - Saclay [2 days, feb 2019]
- $\Delta XCO2 = 0.05 \text{ ppm} + /- 0.20 \text{ ppm}$
- Δ XCH4 = 0,56 ppb +/- 0,90 ppb
 - Jussieu [4 days, july 2019]
- $\Delta XCO2 = 0.13 \text{ ppm} + /- 0.15 \text{ ppm}$
- $\Delta XCH4 = 1.7 \text{ ppb} + /- 0.83 \text{ ppb}$

Measurement differences between the same two instruments vary a little over time.

EM27/SUN versus TCCON-Paris (High Resolution)

@11h-13h	EM27#al13	TCCON-HR	Différence (Δ)
XCO ₂ (ppm)	409.09 ± 0.19	408.84 ± 0.32	0.25
XCH ₄ (ppb)	1845.16 ± 1.00	1847.98 ± 1.39	-2.82
XCO (ppb)	79.27 ± 0.75	75.03 ± 0.47	4.24
XH ₂ O (ppm)	2455 ± 73	2469 ± 63	-14

Futur work of the Working group FTS for MAGIC

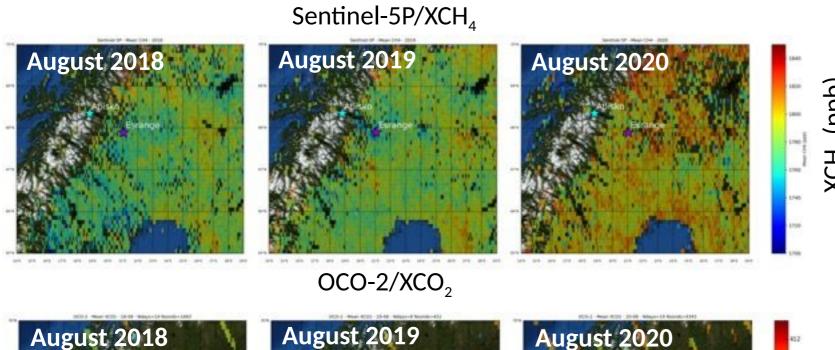
- EM27
- Use of others retrieval codes, as the 4Artic code (based on optimal estimation) which will be used for the MicroCarb
- Comparison of EM27 total columns with MAGIC campaign data: balloon based profils and in-situ Picarro airbone profiles using the last PROFFAST version which provides the column sensitivity values
- Development of a set up to measure ILS of all the EM27 involved in Magic (LERMA)
- Development of a stand alone waterproof casing
- Development of a test bench by LOA for radiometric calibration
- ...data acquisition to be continued: MAGIC 2021

MAGIC2021: Towards high latitudes

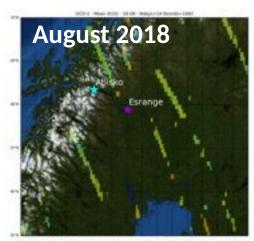
- Specific objectives:
 - CH₄ and CO₂ emissions at high-altitude (~68°N)
 - Validation of space missions in this difficult environment.
- Date and location: 14-26 August 2021 in Northern Sweeden, around Kiruna
- Joint campaign with annual CNES "StratoSciences" campaign.
- Team: 6 joint CNRS labs + ONERA + CNES + DLR + SAFIRE
- >20 instruments for GHG:
 - Balloons: AirCore-HR, AirCore-light, Amulse, Sample, SPECIES
 - **Ground-based**: 3 confirmed EM27/SUN, CHRIS
 - Aircraft: SAFIRE/ATR42 with CHARM-F (CH₄) and VEGA (wind) lidars, Picarros and SPIRIT (trace gases: CH₄, CO₂, CO, N₂O)
- **Funding**: CNES, CNRS, Ecole polytechnique, URCA, Sorbonne U., U. Lille, ONERA, DLR
- Looking for additional cooperations (Sodankyla, HEMERA flights@Kiruna, modelling teams)

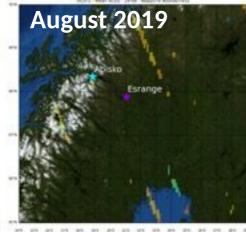
List of instruments

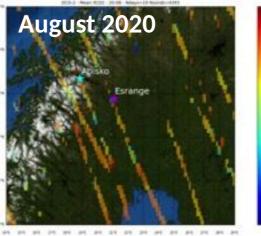
Vectors		Instruments		Team	Observation	
	Meteorological balloons (BLD)	AirCore	5	LMD	0-30 km profiles (CO ₂ , CH ₄ , CO, T, H ₂ O, wind + C isotopes, N ₂ O)	
		Amulse	5	GSMA	0-30 km profiles (CO ₂ , CH ₄ , H ₂ O, T)	
	Open Stratospheric Balloons (BSO) SUPER KLIMAT	AirCore-HR	1	LMD	0-30 km profiles (CO ₂ , CH ₄ , CO, T, H ₂ O, wind + <i>C isotopes</i> , N ₂ O)	
Balloon		AirCore-light	2	LMD		
Ball		Amulse	1	GSMA	0-30 km profiles (CO ₂ , CH ₄ , H ₂ O, T)	
		SAMPLE	1	GSMA	0-30 km profiles at a few points (CO ₂ , CH ₄ , H ₂ O, T)	
		SPECIES	1	LPC2E	0-30 km profiles of many trace gases at ppt level	
	BSO-HEMERA1-TWIN	Contact to be taken with the team to include these GHG measurements				
pu	FTS	CHRIS	1	LOA	Weighted columns XCO ₂ , XCH ₄ , XCO, etc.	
Ground		EM27/SUN	3-4	CNESx1, GSMAx1, LERMAx1, LSCEx?		
fat	In-situ	Picarro	4	SAFIREx1, LSCEx1	In-situ concentration of CO ₂ , CH ₄ , CO	
aircrfat		SPIRIT	1	LPC2E	In-situ concentration of N ₂ O, CH ₄ , CO	
ATR42	Lidar	CHARM-F (CH₄)	1	DLR	Weighted columns XCO ₂ , XCH ₄	
AT		LIVE (Wind)	1	ONERA-DOTA	Wind profile	

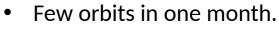


Validation of satellites: OCO-2, S5P, GOSAT, IASI




Average of XCH4 and XCO2 in August over the last 3 years




Few data over 70N

No data over relief (East of Abisko)

High dependence to cloud coverage

Perspectives

- Operational mode for AirCore-Fr network and EM27/SUN Fr consortium in the framework of ICOS and other networks (e.g. COCOON).
- High resolution / city targets: 2022, 2023
 - Objective: Establishing CO₂/CH₄ budget of a big (e.g. Paris) and/or medium size city (e.g. Reims)
 - Deployment of EM27/SUN around the city + balloons/aircrafts
- Tropics (Brazil or Namibia): >2024
 - Objective: tropical emissions and specific atmospheric/surface conditions
 - In the framework of the establishment of a CNES balloon facility in one of these countries
- Over high latitude campaigns (e.g. PolarCamp)
- And of course, specific cal/val campaigns during future GHG mission MicroCarb and Merlin commissioning phases