

PROFFAST User Manual

This manual is intended to provide concise instructions for the use of PROFFAST. PROFFAST is a software package for retrieving trace gas concentrations from interferograms measured with Bruker EM27/SUN solar absorption FTIR spectrometer by using Bruker OPUS software. The PROFFAST software package is developed at the Karlsruhe Institute of Technology (KIT) and funded by the European Space Agency (ESA). Recently, PROFFASTpylot was created to run PROFFAST under Python.

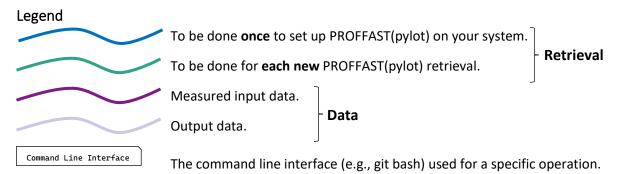
The combination of a common instrumental standard for EM27/SUN spectrometers and a common data analysis procedure with PROFFAST provides a standard for greenhouse gas measurements within the COllaborative Carbon Column Observing Network (COCCON) [1] [2].

Contents

1. Naming, required software and legend 2
2. Literature overview
3. Installation of PROFFAST
4. Test PROFFAST using the example dataset
5. Prepare a retrieval with your own dataset
Interferograms
Map files
Pressure data
Pressure type file
Coordinates 10
Input File
Run Script
6. Running your own retrieval
7. Results
Appendix14
A A more sophisticated retrieval setup 14
B Schematic representation of the PROFFAST algorithm15
C Interpretation of Results: Combined inverted parameters16

1. Naming, required software and legend

Naming


The software described in this manual is called PROFFAST. It includes the trace gas analysis packages PROFFASTpreprocess, PROFFASTpcxs, PROFFASTinvers, and the Python interface PROFFASTpylot. The first three parts together are often referred to as PROFFAST in following. This structure becomes clearer when looking at the Schematic representation of the PROFFAST algorithm on page 15.

Required external software	Software used in this manual
 git git bash is installed within the git package. 	git [3] for Windows
 A program to run git 	git bash command line interface (CLI)
 A program to run ftp (file transfer protocol) 	<u>filezilla</u> [4]
• <u>Python</u> [5]	Python 3.11
A CLI to run python	Windows PowerShell

These software packages are all open-source and available for all common operating systems.

[Note: Git is used to get the PROFFASTpylot package onto your system. A method without git will also be introduced, but git is **highly recommended** as it makes updating much easier.]

The examples in this manual were carried out under Windows 10 Enterprise. Shells and corresponding commands in other operating systems may differ. Information is provided at the relevant point.

Shell commands, file names and paths are written in this font.

2. Literature overview

There are already documentations for both, PROFFAST and PROFFASTpylot, that build the fundament for this manual. These can be found here:

- PROFFAST: You will find some documentation in prf/docs when you have installed PROFFAST (see in Installation of PROFFAST on page 3).
- <u>PROFFASTpylot Documentation</u> [6] (website), <u>GitLab PROFFASTpylot</u> [7] (GitLab repository)
- Material from the COCCON telephone conferences, including Q&A and presentations of measurement campaigns, can be found here: <u>COCCON telcos</u> [8].

3. Installation of PROFFAST

In this section, the download and installation of the software packages are demonstrated. The presented information can be found in more detail in <u>PROFFASTpylot documentation</u> [6] \rightarrow Installation. [As mentioned above, one can get the PROFFASTpylot package in two ways: With git (recommended) or by downloading a zip-archive. Both are explained in the following.]

Downlo	ad PROFFASTpylot with git
What to do	What should happen
Navigate:	user@EM27/SUN/~> cd proffast_path/ user@EM27/SUN/proffast_path> Git Bash
cd *Path where you want to store PROFFAST*	<pre>(In this manual, git bash is used to run git from a command line under Windows.) user@EM27/SUN/proffast_path> git clone https://gitlab.eudat.eu/cod</pre>
Clone git repository:	fastpylot.git Cloning into 'proffastpylot' remote: Enumerating objects: 2566, done. remote: Counting objects: 100% (68/68), done.
<pre>git clone <u>https://gitlab.eudat.eu/coccon-</u> kit/proffastpylot.git</pre>	remote: Compressing objects: 100% (64/64), done. remote: Total 2566 (delta 28), reused 0 (delta 0), pack-reused 249 Receiving objects: 100% (2566/2566), 1.48 MiB 9.97 MiB/s, done. Resolving deltas: 100% (1642/1642), done. user@EM27/SUN/proffast_path>
Alternative: Download zip-file from	n https://gitlab.eudat.eu/coccon-kit/proffastpylot/-
	s <u>ter.zip</u> and unpack it . You will find a directory
proffastpylot-master with dll nec	essary files. Change the name to proffastpylot.
	> proffastpylot ∽
	Name
New directory proff (The .gitignore file only sh	
	prfpylot
	juiginore
	README Resetup
	The second
Updat	e PROFFASTpylot with git
What to do	What should happen
Navigate to the proffastpylot	
folder:	<pre>user@EM27/SUN/proffast_path> cd proffastpylot/ Git Bash user@EM27/SUN/proffastpylot></pre>
cd proffastpylot	user@EM27/SUN/proffastpylot>
Pull the newest version from the	user@EM27/SUN/proffastpylot> git pull
remote repository:	Already up to date. (This feedback is different, if a new version is available.)
git pull	
Alternative: Repeat the download	of the zip-file as shown above.

Add PROFFAST

What to do

Download the newest version of PROFFAST from the KIT website:

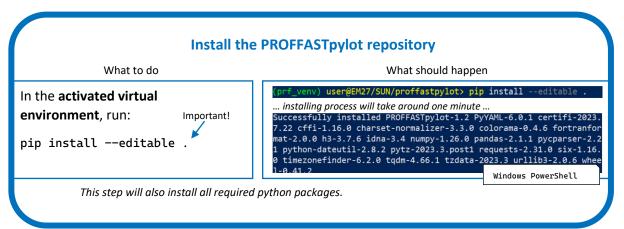
https://www.imkasf.kit.edu/english/3225.php

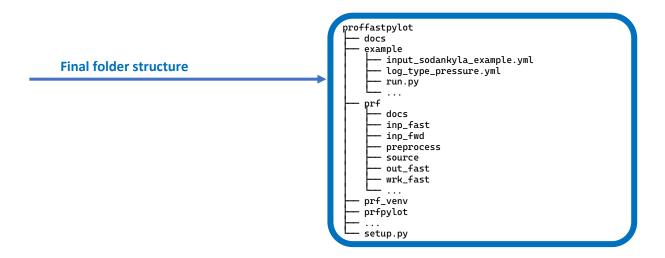
Unzip the zip-file and **move** the prf folder to your proffastpylot folder.

Additionally for **Linux users**: Run the installation script to create the executables:

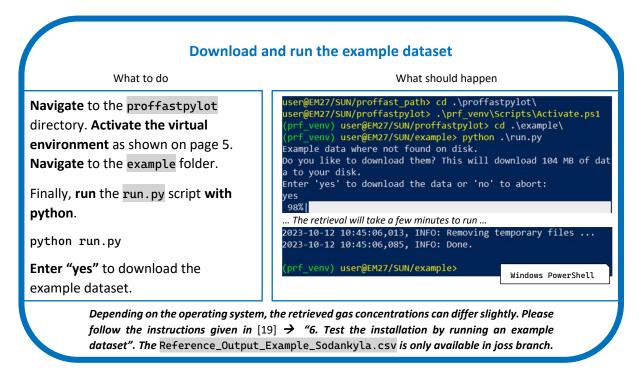
bash install_proffast_linux.sh

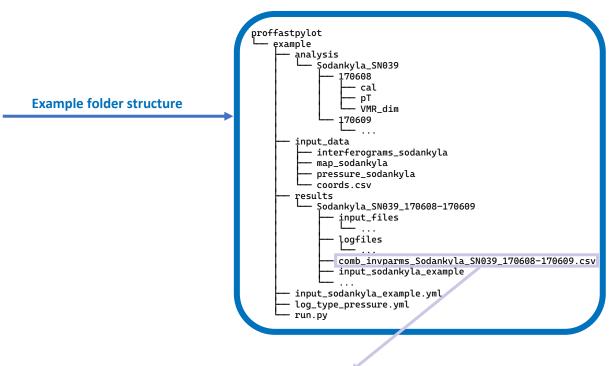
	> proffastpylot	,
	Name	
	📕 docs	
New folder prf added! (The .gitignore file only shows up with git.)	example prf prfpylot citignore LICENSE README	
	🏓 setup	


Create a virtual python environment (venv)						
What to do What should happen						
Navigate to proffastpylot director and create the virtual python environment:	user@EM27/SUN/proffast_path> cd .\proffastpylot\ user@EM27/SUN/proffastpylot> python -m venv prf_venv user@EM27/SUN/proffastpylot> Windows Power	•Shell				
python -m venv prf_venv						
Using a <u>virtual environment</u> [17 your system.	avoids version conflicts within the base python installation on					
	<pre>> proffastpylot Name cf_venv created! docs only shows up with git.) prf prf_venv prfpylot .gitignore LICENSE README setup</pre>					



Activate the virtual environment What to do What should happen In the proffastpylot directory, run: ser@EM27/SUN/proffastpylot> .\prf_venv\Scripts\Activate.ps1 .\prf_venv\Scripts\Activate.ps1 user@EM27/SUN/proffastpylot> Windows PowerShell* (Windows PowerShell*) .\prf_venv\Scripts\activate (Windows CMD) Virtual environment activated! source prf_venv/bin/activate (Linux) @EM27/SUN/proffastpylot> deactivate ser@EM27/SUN/proffastpylot> [To deactivate: deactivate] *To run scripts in the PowerShell, you may need to set the execution policy to at least "RemoteSigned". Run: Set-Execution Policy RemoteSigned -Scope CurrentUser. See [15] for more information.

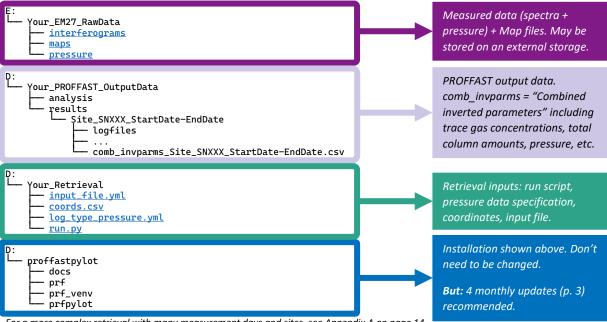




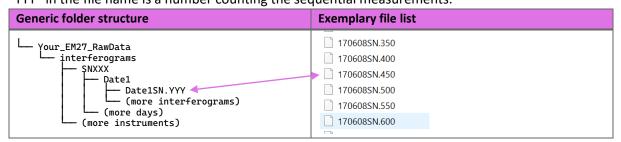
4. Test PROFFAST using the example dataset

After successfully setting up the software environment, an **example** folder is included in the **proffastpylot** directory. In this section, it is shown how an example dataset can be downloaded and then processed to generate a first test result that is of interest for most users.

For most users, the file containing the "combined inverted parameters" will be of main interest. The meaning of the contained quantities is described in Appendix C on page 16.



5. Prepare a retrieval with your own dataset


The example dataset used in the section above provides a first impression of the folder structure of a PROFFAST retrieval. In this section, we learn step by step, how to adapt another dataset to the required input data structure. The recommended folder structure is as follows (PROFFASTpylot documentation [6] \rightarrow Folder Structure).

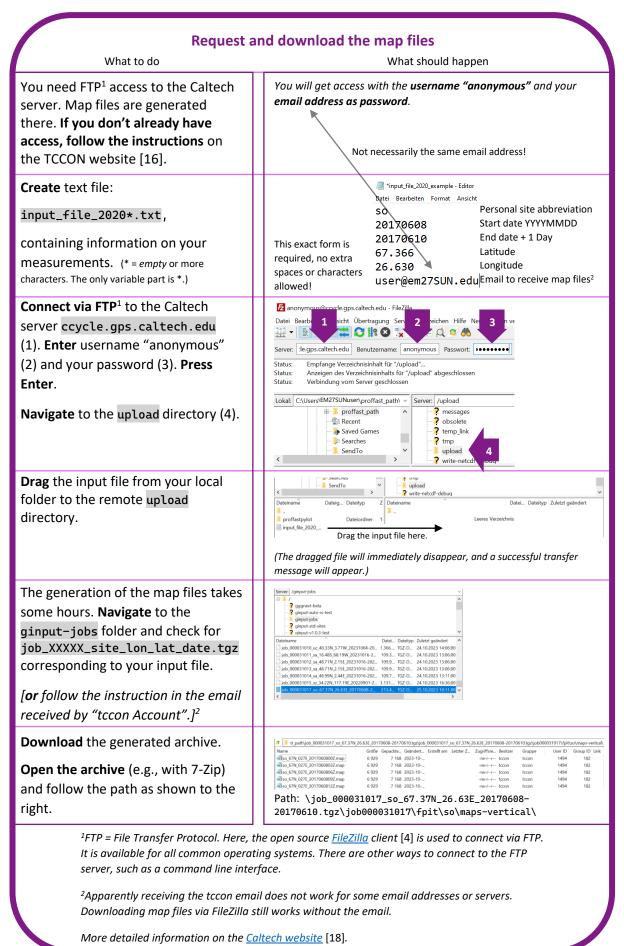
For a more complex retrieval with many measurement days and sites, see Appendix A on page 14.

Interferograms

These are recorded by an EM27/SUN in combination with the OPUS software. The term "SNXXX" showing up in the folder structure refers to the serial number of the used EM27/SUN instrument. "YYY" in the file name is a number counting the sequential measurements.

Map files

The map files contain modeled atmospheric information at the measurement site at the measurement time, e.g., *a-priori VMR (volume mixing ratio) profiles. They are automatically generated on a Caltech server.*


[The measured absorption spectra are fitted to those of the a-priori profiles. These profiles are generated model-based [9]. More information can be found in literature, e.g., in [1]. The map files can be the same for different measurement sites, if the distance between them is less than \approx 20 km.]

Generic folder structure	Exemplary file list
LYour_EM27_RawData maps site-abbrev_latN_longE_DateTime.map (more map files)	 so_67N_027E_2017060800Z so_67N_027E_2017060803Z so_67N_027E_2017060806Z so_67N_027E_2017060809Z so_67N_027E_2017060812Z so_67N_027E_2017060815Z

Pressure data

The pressure dataset contains the surface pressure at the EM27/SUN location at the time of measurement. It is measured by an external sensor at the measurement site.

[Surface pressure is critical to the retrieval process as it is determined by the air mass in the column above the instrument. The accuracy of the surface pressure must be within 0.2 mbar. Therefore, the pressure sensor must be calibrated to an absolute reference pressure. Finally, any difference in height between the EM27/SUN and the pressure sensor must be taken into account, as 0.2 mbar corresponds to a height difference of approximately 2 m. Information about pressure measurement strategies can be found in published material describing various COCCON field campaigns, e.g. [10].]

Generic folder structure	Exemplary file list (extract from example)		
Your_EM27_RawData pressure (pressure files as specified in pressure type file)	UTCdate "08.06.2017" "08.06.2017" "08.06.2017" "08.06.2017" "08.06.2017"	UTCtime "00:10:00" "00:20:00" "00:30:00" "00:40:00" "00:50:00"	BaroTHB40 +9.9892e+02 +9.9902e+02 +9.9902e+02 +9.9912e+02 +9.9912e+02

Pressure type file

The pressure type file provides PROFFAST the information about the **file format, time format and other specifications** of the pressure dataset you use for your retrieval.

[The pressure data is often measured by individual sensors, depending on the availability or practicability at the measurement location. Consequently, the data usually has different file formats, time formats, units and so on. Therefore, the pressure data needs to be specified in more detail to be treated by PROFFAST. For this purpose, a file "log_type_pressure.yml" must be adapted to the dataset used.]

Set up the pressure type file

What to do

Copy the log_type_pressure.yml from the example directory into your own retrieval directory.

Open the log_type_pressure.yml file with a text editor.

Follow the instructions given in the file and **adjust the example file to your own pressure dataset**.

Most important parameters are:

- "dataframe_parameters": "key" ↔ name of column, "fmt" ↔ format of quantity in column, "csv_kwargs: sep" ↔ separator between columns in pressure data file (\t = tab)
- "time_key" can be anything, must not be UTC time.
- "UTC offset of data"

For more information, see the <u>PROFFASTpylot documentation</u> [6] \rightarrow Pressure Input.

Coordinates

The coordinates of the measurement locations must be given either in the input file or in an external file. The latter is recommended, especially when measuring at more than one location. They can be measured e.g., by a GPS sensor and manually written to a .csv file.

[The recommended accuracy is 0.001°, which is equivalent to 100 m.]

Generic folder structure	File structure with exemplary data
1	A B C D E
<pre>Your_Retrieval coords.csv</pre>	1 Site, Latitude, Longitude, Altitude_kmasl, Starttime
	2 Sodankyla, 67.366, 26.630, 0.181, 2014-01-01
	3 Thessaloniki, 40.634, 22.956, 0.067, 2021-10-04
	4 Karlsruhe, 49.103, 8.436, 0.130, 2014-01-01
	F

Input File

The input file here refers to the PROFFASTpylot input file, not to be confused with the one used to generate the map files. This file specifies the paths for all input and output files. Other specifications can be made in this file as well. Most of the entries can be left as defaults for the standard measurement.

Set up the input file						
What to do						
Copy the example input_sodankyla_example.yml into your own retrieval directory and rename it. D:/Your_Retrieval represents an exemplary general retrieval directory.						
Open the new input file with a text editor	or.					
Adjust the entries of the file names and paths according to your own folder structure. In the example below, the left column shows an exemplary <i>input folder structure</i> whereas the right column the corresponding entries in the <i>input file</i> .						
E: Your_EM27_RawData interferograms maps pressure D: Your_PROFFAST_OutputData analysis results Site_SNXXX_StartDate-EndDate logfiles comb_invparms_Site_SNXXX_Sta	rtDate-EndDate.csv					
<pre>Your_Retrieval input_file.yml coords.csv log_type_pressure.yml run.py D: proffastpylot docs prf prf_ prf_venv prfpylot</pre>	<pre>coord_file: coords.csv¹ interferogram_path: E:/Your_EM27_RawData/interferograms² map_path: E:/Your_EM27_RawData/maps pressure_path: E:/Your_EM27_RawData/pressure pressure_type_file: log_type_pressure.yml analysis_path: D:/Your_PROFFAST_OutputData/analysis result_path: D:/Your_PROFFAST_OutputData/results</pre>					
¹ No path specified here, because coords.csv is in same folder as run.py, as for pressure type file. ² Be aware that forward slashes (/) are used for paths throughout this manual. For some APIs (Application Programming Interfaces), backslashes (\) could be necessary. For more information, see the <u>PROFFASTpylot documentation</u> [6] \rightarrow Folder Structure.						

Run Script

The final step is to adjust the run.py script that carries out the PROFFAST retrieval.

Se	t up the run script				
What to do What should happen					
Copy the run.py from the example into your own retrieval directory and rename it. Open your new run script with a text editor.	You should now have created a folder structure as shown on page 7. Edited run.py script: """Ready-to use example to demonstrate the usage of PROFFASTpylot.				
Remove the code that is only needed for the example retrieval: The comments at the top of the script and the download of the example dataset.	<pre>To execute this file from/proffastpylot/example as your working directory. The Sodankyla example data set will be downloaded if not present. All steps of the retrieval with PROFFAST will be executed by Pylot.run() automatically. """ from prfpylot.download_example import ExampleDownloadHandler from prfpylot.pylot import Pylot # This statement needs to be executed in all run scripts to prevent problems # with the multiprocessing on windows ifname == "main": # Check if example input data is already available on disk, # if not download it. # This is not needed for your personal PROFASTpylot run ExampleDownloadHandler().check_and_download_example_data() # The following part can be adapted to your own retrieval input_file = "input_sodankyla_example.yml" input_file = "input_file.yml"</pre>				
Set the desired number of parallel processes ¹ .	MyPylot = Pylot(input_file, logginglevel="info") MyPylot.run(n_processes=2)				
¹ Process the data of different measur	rement days parallel on different processor cores. The				
	s is the number of processor cores of your system.				

For information on running PROFFAST partially (e.g. only preprocessing), read in the <u>PROFFAST pylot documentation</u> [6] \rightarrow Usage.

6. Running your own retrieval

Now that you have prepared the dataset and input files, three more steps must be carried out to complete the retrieval:

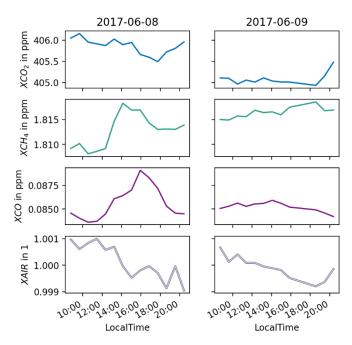
Update <u>PROFFASTpylot</u> (p. 3) and make sure you have the newest version of <u>PROFFAST</u> (p.4).

Activate the virtual environment (p. 5).

Run the run script (p. 11).

Wait for the results. Depending on the dataset and the processing power of your system, this will take at least several minutes. For datasets with many measurement days and minutely scans, it might take several hours. The results can be found in the results folder.

[One important scientific reason for updates are the ILS (instrumental line shape) parameters. The ILS parameters are individually determined for each EM27/SUN because every instrument differs slightly in interferometric alignment, optical aberrations etc. (read in [11]). A list with the current ILS parameters is provided in the prfpylot directory. These should be used for a COCCON compliant retrieval. Information on the implementation of ILS parameters in PROFFAST can also be found in the PROFFAST pylot documentation [6] \rightarrow ILS Parameters.]


Karlsruher Institut für Technologie

7. Results

A graphical representation of the results is a convenient way for their interpretation.

For the exemplary dataset, the **columnaveraged dry-air mole fractions** *Xgas* for the most important greenhouse gases are shown on the right side. The use of dry-air mole fractions has the advantage of eliminating concentration variations caused by variable ground pressure and the highly variable mixing ratio of water vapor (0 - 4%). Compared to total column amounts, using *Xgas* also eliminates systematic errors induced by surface pressure. **Careful** <u>calibration</u> [12] is required to obtain absolute trace gas concentrations (for more information, see, e.g., in [11]).

The quantity *XAIR* can serve as a measure of system stability with an ideal value of 1. If data derived from observations recorded at low to moderate airmass (Solar Zenith

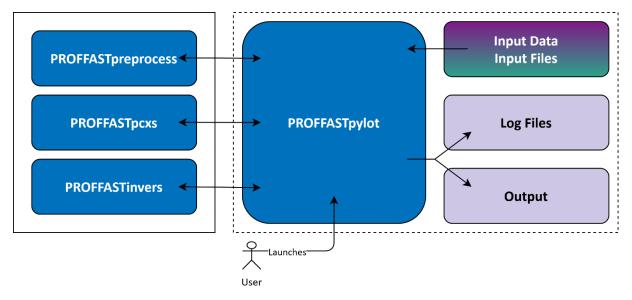
Angle (SZA) < 70°) and during stable weather conditions show deviations in *XAIR* of more than 1% from unity, this might indicate problems with the FTIR measurements or with the pressure recording and would require further investigation. More information can be found in [1] or other contributions within the COCCON framework.

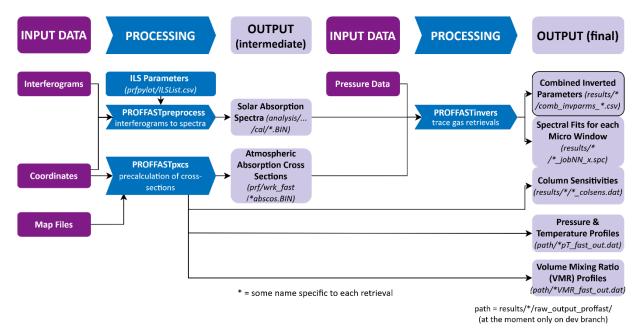
Appendix

A A more sophisticated retrieval setup

The folder structure presented in <u>Prepare a retrieval with your own dataset?</u> (p. 7) needs to be extended if you have many measurement days and different measurement sites. In this case, the following adjustments provide an extended folder structure.

Set up an extended folder structure What to do Match the paths specified in the input files against the input data structure and the desired output structure. Here, a folder structure for an exemplary dataset with 2 instruments measuring at 3 measurement sites is shown. E: Your_EM27_RawData interferograms SN037		
Match the paths specified in the <i>input files</i> against the <i>input data structure and the desired</i> output structure. Here, a folder structure for an exemplary dataset with 2 instruments measuring at 3 measurement sites is shown.		
E: Your_EM27_RawData interferograms	output structure. Here, a folder s	input files against the input data structure and the desired tructure for an exemplary dataset with 2 instruments
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	<pre>E: Your_EM27_RawData interferograms SN037 SN039 maps* pressure Site1 Site2 Site3 D: Your_PROFFAST_OutputData analysis results Site1_SN039_StartDate1_En logfiles comb_invparms_Site1_S Site2_SN037_StartDate2_En logfiles comb_invparms_Site2_S Site3_SN037_StartDate3_En logfiles comb_invparms_Site3_S Site3_SN037_StartDate3_En logfiles comb_invparms_Site3_S Site3_SN037_startDate3_En logfiles comb_invparms_Site3_S p: Your_Retrieval run.py pressure_type_files log_type_pressure_Site3_y log_type_pressure_Site3_y log_type_pressure_Site3_y</pre>	dDate1 N039_StartDate1_EndDate1.csv dDate2 N037_StartDate2_EndDate2.csv dDate3 N037_StartDate3_EndDate3.csv
<pre>input_files input_file_Site1.yml input_file_Site2.yml input_file_Site3.yml proffastpylot docs prf </pre> Exemplary parameters for input_file_Site1.yml: coord_file: coords.csv interferogram_path: E:/Your_EM27_RawData/interferograms/SN039 map_path: E:/Your_EM27_RawData/maps pressure_path: E:/Your_EM27_RawData/pressure/Site1	<pre>input_files input_file_Site1.yml input_file_Site2.yml input_file_Site3.yml proffastpylot docs prf prf_venv prfpylot</pre>	<pre>coord_file: coords.csv interferogram_path: E:/Your_EM27_RawData/interferograms/SN039 map_path: E:/Your_EM27_RawData/maps pressure_path: E:/Your_EM27_RawData/pressure/Site1 pressure_type_file: pressure_type_files/log_type_pressure_Site1.yml analysis_path: D:/Your_PROFFAST_OutputData/analysis result_path: D:/Your_PROFFAST_OutputData/results over all input files or use different run scripts for the different uld be:</pre>




B Schematic representation of the PROFFAST algorithm

The schematic representations in the following shall mainly serve for the general understanding of the workflow of this software.

The first figure shows the schematic interaction between PROFFASTpylot, the other PROFFAST components and the retrieval data. For a basic trace gas retrieval with PROFFAST, the user only provides all needed input data and launches PROFFASTpylot. The latter reads the input data, passes it on to the corresponding processing scripts and finally writes the results to the desired folders.

The second figure shows a schematic of the trace gas analysis within PROFFAST. For simplicity, PROFFASTpylot is not included in this figure. Also, only the input parameters presented here in this manual are shown. However, the output data in this figure contains information more than the usual "combined inverted parameters" and may be of interest to advanced users.

More information on <u>Column sensitivities</u> [13].

C Interpretation of Results: Combined inverted parameters

In this section, the quantities contained in the results/comb_invparms*.csv file are specified. The main quantities related to trace gas concentrations are:

- Total column amount (TC) of molecules in $\frac{\text{molec.}}{\text{m}^2}$: $TC_{\text{gas}} = \int_{z_0}^{\infty} dz \,\rho_{\text{N}}$ with the ground height z_0 and the number density of the trace gas ρ_{N} (in $\frac{\text{molec.}}{\text{m}^3}$);
- Column-averaged dry-air mole fraction (DMF) in ppm: $X_{gas} = \frac{TC_{gas}}{TC_{DrvAir}}$.

UTC	LocalTime	spectrum	JulianDate	UTtimeh	gndP	gndT	latdeg
Coordinated Universal Time	Time at measurement site	Spectrum measured in specific time interval	Count of days [14]	Decimal UTC hours	Surface pressure in millibars	Surface temperature in Kelvin	Latitude in degrees
londeg	altim	appSZA	azimuth	XH2O	XAIR	XCO2	XCH4
Longitude in degrees	Altitude in meters	Solar zenith angle in degrees	Solar azimuth angle (south=0°) in degrees	DMF of water vapor in ppm	DMF of dry air in 1 (ideally XAIR = 1)	DMF of CO ₂ in ppm	DMF of CH₄ in ppm
ХСО	XCH4_S5P	H2O	02	CO2	CH4	СО	CH4_S5P
DMF of CO in ppm	DMF of CH ₄ calculated like Sentinel- 5P ¹ in ppm	TC of H ₂ O in molecules/m ²	TC of O₂ in molecules/m²	TC of CO ₂ in molecules/m ²	TC of CH₄ in molecules/m ²	TC of CO in molecules/m ²	TC of CH₄ calculated like Sentinel- 5P ¹ in molecules/m ²

¹CH₄ abundance that is calculated in the same spectral window (channel 2) as CO. This window is also used by the Sentinel-SP satellite.

- M. Frey, M. K. Sha, F. Hase, M. Kiel, T. Blumenstock, R. Harig, G. Surawicz, N. M. Deutscher, K. Shiomi, J. E. Franklin, H. Bösch, J. Chen, M. Grutter, H. Ohyama, Y. Sun, A. Butz, G. Mengistu Tsidu, D. Ene, D. Wunch, Z. Cao, O. Garcia, M. Ramonet, F. Vogel and J. Orphal, "Building the COllaborative Carbon Column Observing Network (COCCON): long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer," *Atmospheric Measurement Techniques*, vol. 12, no. 3, pp. 1513-1530, 2019.
- [2] KIT IMK-ASF, "IMK-ASF About IMK-ASF Research Groups Ground-Based Remote Sensing -COCCON," [Online]. Available: https://www.imk-asf.kit.edu/english/COCCON.php.
- [3] Git, "Git Downloads," [Online]. Available: https://git-scm.com/downloads. [Accessed 23 11 2023].
- [4] FilleZilla, "FileZilla The free FTP solution," [Online]. Available: https://filezilla-project.org/. [Accessed 23 11 2023].
- [5] Python, "Download Python," Python.org, [Online]. Available: https://www.python.org/downloads/.
- [6] L. Feld, B. Herkommer and D. Dubravica, "PROFFASTpylot documentation," 06 09 2023.
 [Online]. Available: https://www.imk-asf.kit.edu/english/4261.php. [Accessed 23 11 2023].
- [7] L. Feld, B. Herkommer and D. Dubravica, "docs · master · coccon-kit / PROFFASTpylot · GitLab," GitLab, 12 05 2023. [Online]. Available: https://gitlab.eudat.eu/coccon-kit/proffastpylot/-/tree/master/docs.
- [8] KIT IMK-ASF, "IMK-ASF About IMK-ASF Research Groups Ground-Based Remote Sensing -COCCON - Telephone Conferences," [Online]. Available: https://www.imkasf.kit.edu/english/3934.php. [Accessed 12 12 2023].
- [9] J. Laughner, S. Roche, M. Kiel, G. C. Toon, D. Wunch, B. C. Baier, S. Biraud, H. Chen, R. Kivi, T. Laemmel, K. McKain, P.-Y. Quéhé, C. Rousogenous, B. B. Stephens, K. Walker and P. O. Wennberg, "A new algorithm to generate a priori trace gas profiles for the GGG2020 retrieval algorithm," *Atmospheric Measurement Techniques*, vol. 16, no. 5, pp. 1121-1146, 2023.
- [10] P. L. Schmid, "Quantification of Greenhouse Gas Emissions in Thessaloniki, Greece," KIT, Karlsruhe, 2023.
- [11] C. Alberti, F. Hase, M. Frey, D. Dubravica, T. Blumenstock, A. Dehn, P. Castracane, G. Surawicz, R. Harig, B. C. Baier, C. Bès, J. Bi, H. Boesch, A. Buth, Z. Cai, J. Chen, S. M. Crowell, N. M. Deutscher, D. Ene, J. E. Franklin, O. García, D. Griffith, B. Grouiez, M. Grutter, A. Hamdouni, S. Houweling, N. Humpage, N. Jacobs, S. Jeong, L. Joly, N. B. Jonas, D. Jouglet, R. Kivi, R. Kleinschek, M. Lopez, D. J. Medeiros, I. Morino, N. Mostafavipak, A. Müller, H. Ohyama, P. I. Palmer, M. Pathakoti, D. F. Pollard, U. Raffalski, M. Ramonet, R. Ramsay, M. K. Sha, K. Shiomi, W. Simpson, W. Stremme, Y. Sun, H. Tanimoto, Y. Té, G. M. Tsidu, V. A. Velazco, F. Vogel, M. Watanabe, C. Wei, D. Wunch, M. Yamasoe, L. Zhang and J. Orphal, "Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON)," *Atmospheric Measurement Techniques*, vol. 15, no. 8, pp. 2433-2463, 2022.
- [12] KIT IMK-ASF, "2021-04-30_Instrument-Calibration.pdf," [Online]. Available: https://www.imkasf.kit.edu/downloads/Coccon/2021-04-30_Instrument-Calibration.pdf.

- [13] KIT IMK-ASF, " IMK-ASF About IMK-ASF Research Groups Ground-Based Remote Sensing -COCCON - Column Sensitivities," [Online]. Available: https://www.imkasf.kit.edu/english/3330.php . [Accessed 12 12 2023].
- [14] Wikipedia, "Julian day," [Online]. Available: https://en.wikipedia.org/w/index.php?title=Julian_day&oldid=1180339802. [Accessed 23 11 2023].
- [15] S. Wheeler, "about Execution Policies PowerShell," [Online]. Available: https://learn.microsoft.com/enus/powershell/module/microsoft.powershell.core/about/about_execution_policies?view =powershell-7.4.
- [16] J. Laughner, "EM27ProffastSupport < Main < TCCON Wiki," Caltech, 06 02 2023. [Online]. Available: https://tccon-wiki.caltech.edu/Main/EM27ProffastSupport.
- [17] Python, "Python documentation: venv Creation of virtual environments," Python, [Online]. Available: https://docs.python.org/3/library/venv.html. [Accessed 23 11 2023].
- [18] J. Laughner, "ObtainingGinputData < Main < TCCON Wiki," Caltech, 06 02 2023. [Online]. Available: https://tcconwiki.caltech.edu/Main/ObtainingGinputData#Custom_locations_and_EM27s. [Accessed 28 11 2023].
- [19] L. Feld, B. Herkommer and D. Dubravica, "docs/1-1_installation · joss · coccon-kit / PROFFASTpylot · GitLab," GitLab, 04 09 2023. [Online]. Available: https://gitlab.eudat.eu/coccon-kit/proffastpylot/-/blob/joss/docs/1-1_installation.md?ref_type=heads.