Submitted for publication in Journal of Atmospheric and Oceanic Technology on
30 September 1997

SAFIRE-A
Spectroscopy of the Atmosphere using Far-InfraRed Emission /Airborne

Bruno Carli\textsuperscript{a}, Peter A. R. Ade\textsuperscript{b}, Ugo Cortesi\textsuperscript{a}, Paul Dickinson\textsuperscript{c}, Michele Epifani\textsuperscript{a}, Fred C. Gannaway\textsuperscript{b}, Alessandro Gignoli\textsuperscript{a}, Corneli Keim\textsuperscript{f}, Clare Lee\textsuperscript{b}, Claude Meny\textsuperscript{d}, Jean Leotin\textsuperscript{d}, Francesco Mencaraglia\textsuperscript{a}, Alexander G. Murray\textsuperscript{b}, Ira G. Nolt\textsuperscript{e}, Marco Ridolfi\textsuperscript{a}

\textsuperscript{a}IROE-CNR, Via Panciatichi 64, 50127 Firenze (Italy)
\textsuperscript{b}QMW, Mile End Road, London, E1 4NS (United Kingdom)
\textsuperscript{c}RAL, Chilton Didcot, Oxfordshire OX11 0QX (United Kingdom)
\textsuperscript{d}SNCMP, Complexe Scientifique de Rangueil, 31077 Toulouse CEDEX (France)
\textsuperscript{e}NASA Langley Reasearch Center, Hampton, VA 23681-0001 (USA)
\textsuperscript{f}IMK-FZK, Postfach 3640, D-76021 Karlsruhe (Germany)
Abstract

A new instrument named SAFIRE-A (Spectroscopy of the Atmosphere using FarInfraRed Emission - Airborne) which can operate on high altitude platforms has been developed for the study of the atmospheric composition through limb scanning emission measurements. The instrument is a polarising Fourier transform spectrometer that operates in the far infrared with a resolution of 0.004 cm$^{-1}$. SAFIRE-A uses efficient photon noise limited detectors and a novel optical configuration which provides a cold pupil and field stop as well as cold narrow bandpass filters to enhance its sensitivity. The instrument was successfully operated on a M-55 stratospheric research aircraft in the polar regions during the winter '96/97 Airborne Polar Experiment. The instrument design, aircraft integration and performances attained in the field campaign are described and discussed. The atmospheric emission spectrum is measured with an rms noise accuracy of 0.5 K (measured in brightness temperature) in each spectral element near 20 cm$^{-1}$ within a 30 second measurement time.
1. Introduction

In the past five years, much has been learned about the basic mechanisms of ozone loss at high latitudes from aircraft programs such as the European Arctic Stratospheric Ozone Experiment (EASOE) and the Arctic Aircraft Stratospheric Experiment (AASE). These programs have produced a good understanding of the perturbed polar chemistry within the polar vortex, but leave unresolved many questions of the chemistry and resulting ozone loss outside the vortex but affected by vortex processed air.

Here we describe a new instrument SAFIRE-A (Spectroscopy of the Atmosphere using FarInfraRed Emission - Airborne) which is designed specifically to make sensitive passive measurements of most of the key species involved in ozone destruction by emission spectroscopy in the far-infrared region which is particularly rich in rotational line features of hydrogen, oxygen and chlorine molecular compounds involved in ozone chemistry. The measurements must be performed above the tropopause in order to avoid water vapour attenuation. Observation from high altitudes permits a sequence of angles above and below the horizon (limb scanning) to be viewed and therefore allows the retrieval of the vertical concentration of the observed species, from the tropopause (which in the polar regions can be at less than 10 km altitude) to the flight altitude (about 20 km for aircraft altitudes; about 40 km for balloon altitudes), with measurements of total column content above the flight altitude. Several constituents have been measured with this technique (Carli, 1992) using a high resolution balloon borne Fourier Transform Spectrometer (FTS) instrument, but the location was limited to mid-latitudes near the launch facility. The size of this balloon instrument (Carli, 1984) precluded its use in an aircraft as well as in a polar balloon. Its design also prohibited the exploitation of the current superior photon noise limited detectors. SAFIRE-A is a new instrument that capitalises on the experience of ten flights with the
balloon instrument, on the design of a space instrument that was studied for the EOS program, and on the new detector technology. It has been optimised for operation on board the M55-Geophysica stratospheric aircraft and was used in the Airborne Polar Experiment (APE) during the winter 96/97 Arctic Campaign in Rovaniemi, Finland.

The role of SAFIRE-A in this campaign has been to determine the extent of the chemical modifications to the stratospheric air at specific geographical locations (e.g. in the presence of Polar Stratospheric Clouds (PSC) where heterogeneous chemistry is occurring). Far-infrared observations have the considerable advantage that they are not affected by the presence of aerosols and PSC particles. Both the scattering and thermal emission from aerosols and PSC particles have negligible effect on the instrument response, since the aerosols have a size much smaller than the wavelengths observed. The species to be observed are determined by placing appropriate filters in front of the two detectors which cover the spectral region from 10 to 250 cm$^{-1}$, with an unapodised spectral resolution of 0.004 cm$^{-1}$.

SAFIRE-A has been designed to be a relatively compact and rugged instrument making it suitable for deployment in geographically important locations (e.g. tropics, mid-latitude or polar) from balloon or aircraft platforms. The main features of the instrument are:

- Folded optics in the interferometer (factor of 8) to provide tilt compensation and reduce instrument size;
- Cold pupils and field stops in conjunction with narrow band filters tuned around selected atmospheric features for optimum detector sensitivity;
• Integration with the high altitude M-55 Geophysica aircraft for frequent and flexible flights as part of an integrated payload of scientific instruments.

The design, test and qualification of the instrument as well as the preliminary results obtained in the Airborne Polar Experiment (APE) during the winter '96/'97 in Rovaniemi, Finland, are described in the following sections.
2. Instrument layout and optical design

The instrument is a high spectral resolution Fourier transform spectrometer of the Martin-Puplett type (Martin, 1969) with a polarising beamsplitter. The overall optical layout of the instrument is presented in Figure 1, which shows the beam propagation from the Front End Optics (FEO), through the Fourier Transform Interferometer (FTI), to the Cold Optics and Detector Module (CODM). The atmosphere is viewed through a 200 by 400 mm open port located on the right side of the aircraft with respect to the flight direction. The atmospheric signal is collected by a flat limb scanning mirror M1, that corrects for the aircraft roll and performs the limb scan sequence. The scanning mirror is mounted at 45° to the optical axis of the instrument beam and is rotated about this axis so that the instantaneous field of view (IFOV) is scanned vertically in a plane perpendicular to the aircraft flight direction (see Figure 2).

An input telescope consisting of two confocal off-axis paraboloids, M2 and M3, provides a 2/3 reduction in the solid-angle of the interferometer relative to the solid angle of the atmospheric beam. A 10 mm diameter intermediate field stop located at the focal point of the telescope minimises the thermal and turbulent exchange of atmospheric air between the instrument and the external environment.

The input polariser of the FTI, mounted beyond the focal point of the telescope, transmits the component of atmospheric radiation which is linearly polarised in the vertical plane (see Fig. 2). The orthogonal linear polarisation radiation that is reflected by this polariser originates from a calibration source and provides the second input port of the instrument. By rotating this input polariser about an axis perpendicular to the optical axis of the beam a second
blackbody source at a different temperature can be observed providing data for in-flight radiometric calibration (see section 3.2). The second off-axis paraboloid of the input telescope provides a collimated beam in which the sources at the two input ports (atmosphere and calibration black body) are superimposed with orthogonal polarisations.

The collimated beam which enters the FTI through the polarising beam splitter M4 has its principal axis oriented at 45° with respect to the directions of polarisation of the two sources. Therefore each source is split into two polarised components (parallel and perpendicular to the principal axis of the beamsplitter) of equal amplitude: the parallel vector being transmitted to the moving fold mirrors MMA and the perpendicular vector being reflected and folded by the flat mirror M5 towards the moving fold mirrors MMB. Fixed roof top mirrors in each arm of the interferometer (FMA and FMB) reflect the beams back (see inset in figure 1) and introduce a folding of the wavefront around the edge of the roof. The dihedral edge of each fixed roof is vertical so that, for a wave polarised at 45°, the folding of the wavefront is equivalent to a rotation of the plane of polarisation by 90°. When the polarised components recombine at the beamsplitter, after travelling different optical paths, the one that was transmitted is now reflected and the one that was reflected is now transmitted. For an ideal polarising beamsplitter the full input signal is transmitted to the output side.

The collimated output beam of the interferometer is condensed into the CODM by an off-axis paraboloid M6 and a folding flat mirror M7. Figure 3 shows the optical configuration of the CODM. The FTI output polariser (analyser) is located at the focal point of M6 and creates two output channels (reflected and transmitted beam) in which the components that travelled different paths have now the same polarisation and can interfere to produce
interferograms. At both output ports we observe the interferogram of the spectral difference between the two input ports. The two interferograms have opposite phase (one interferogram is positive going, the other negative).

Two small condensing mirrors in each channel re-image the focal plane of the paraboloid onto the detector horn apertures (field stops) which are sized to provide the appropriate beam aperture on the sky when projected back through the optical system. A detector field stop of 10 mm diameter corresponds to an IFOV of 1.4°. A cold pupil is located in each of the parallel beam sections between the two small condensing mirrors. The size and position of the cold pupil defines the size and position of its image in the FTI and is used to limit the instrument beam section at the middle position of the interferometer path so that the beam growth in its solid angle is minimised (a 16 mm cold pupil corresponds to a 12.8 cm diameter beam section in the interferometer).

The maximum throughput of the instrument is equal to 0.028 cm$^2$ sterad and can be used up to a resolving power of 30,000. The throughput reduction that would be necessary for either higher resolving power or smaller IFOV can be obtained by reducing the detector field stop.

A cold narrow band filter is located in front of each detector and together with the cold pupil and field stop is used to limit the radiation flux on the detector and hence the associated photon noise. Different filters are used on the two detectors in order to simultaneously observe different spectral regions.
3. Description of instrument subsystems

Apart from the basic FTI optics the instrument includes the following subsystems as shown in the layout in Figure 4:

- Limb Scanning Mirror, LSM
- Atitude and Heading Reference System, AHRS
- Instrument Calibration Unit, ICU
- Scanning Mechanism of the FTI
- He-Ne Laser Interferometer
- Cryostat and Cold Optics and Detectors Module, CODM
- Flight Electronics and Data Recording, CEU, AEU, and IRS

A description of each of these relevant subsystems is given in the following sections.

3.1 Limb scanning mirror

The control system of the limb scanning mirror in the FEO must be able to accurately set the limb view angle and correct for possible changes of the attitude of the platform. In the case of a balloon platform changes in the attitude are rather slow, but a high pointing accuracy must be attained (typically about 1 arcminute, to maintain a tangent height accuracy of 100 m for a tangent altitude view to the 30 km level below the flight altitude). In the case of an aircraft platform, the pointing system must respond to more rapid variations, but the pointing accuracy is somewhat less stringent (typically 2-3 arcmin) because of the lower altitude of the platform. The SAFIRE-A pointing system has been designed for use in both operational situations and uses an externally provided attitude signal. When used on an aircraft the
attitude signal can be provided by the Aircraft Navigation System (ANS). However, there is an uncertainty associated with this control loop since the SAFIRE-A instrument is supported by anti-vibration mounts which allow some flexure between the roll of the aircraft and the roll of the instrument.

During the Rovaniemi campaign comparative measurements were made between the ANS output and data from an Attitude and Heading Reference System (AHRS) mounted on the SAFIRE-A base-plate. The AHRS is an attitude system developed for another aircraft remote sensing instrument, Michelson Interferometer for Passive Atmospheric Sounding, (MIPAS) (Piesch, 1996). The MIPAS AHRS (Seefeldner, 1995) consists of two parts: an inertial navigation system (a combination of gyros and accelerometers) to detect rapid changes of attitude and a Global Positioning System (GPS) to prevent drift errors due to changes in position. The local horizon, which is the reference for the attitude angles, is defined from the geographical position using the WGS-84 Earth model (Decker, 1984). With the aid of the GPS, the nominal $3\sigma$ accuracy of the AHRS is 1.5 arcminutes for the two attitude angles (roll and pitch). This high accuracy was confirmed in several balloon flights where the absolute pointing accuracy was determined by a star reference system (Maucher, 1995).

The comparison data from the Rovaniemi campaign showed that both systems (ANS and AHRS) observe about the same roll angle, apart from a small constant offset between their mean values throughout a flight (see Figure 5). When the static offset is removed the rms of the difference of the two readings is less than 1 arcminute. This shows that a negligible instability is introduced by the anti-vibration mounts. A closer study of the ANS data shows that at high frequencies it has a higher fluctuation level than the AHRS, with a peak
amplitude of about 1 arcminute (Figure 6). Explanations for this could be either that the ANS detects real vibrations of the M55 airframe which are damped by the SAFIRE-A mounts, or that the ANS has a measurement noise with a bandwidth larger than the AHRS.

We also have clear evidence of occasional, but significant, discrepancies between the two systems. It is believed that some of these result from different elongations of the left and right anti-vibration mounts during major aircraft manoeuvres. However, although measurable, the differences between the roll angle of the instrument and the roll angle provided by the ANS were either small or of limited duration. The degradation to the recorded data was small so these results validate the operational use of the ANS for roll correction. Naturally, the use of a instrument-mounted AHRS would be better.

### 3.2 Instrument calibration unit

The Martin-Puplett interferometer measures the spectrum of the difference between the signals transmitted and reflected by the input polariser. The transmitted signal is the atmospheric emission and is varied by changing the pointing of the limb scan mirror, while the reflected signal can be changed by switching the orientation of the input polariser. By switching the reflected input beam between two reference blackbodies at different temperatures, it is therefore possible to calibrate the instrument response. The in-flight calibration of the SAFIRE-A spectrometer was performed in this manner by the use of two blackbodies at temperatures $T_1$ and $T_2$ (with $T_1$ significantly different from $T_2$). The blackbodies are made from a conical cavity bored into an aluminium cylinder which is then blackened with a 1 mm thick deposition of carbon impregnated Epotek 902 epoxy. This coating provides a reflectivity of less than 13% over the spectral range from 20 cm$^{-1}$ to 650 cm$^{-1}$. Since at least two reflections occur in the cavity the blackbodies have an emissivity
better than 98.3%. One of the two reference sources is heated to about 100°C (‘hot blackbody’) and its temperature is stabilised by a temperature controller; the other source is kept at the ambient temperature near 0°C (‘cold blackbody’) and its temperature is passively monitored. In flight, the input polariser is rotated, to allow one of the blackbody sources to be viewed in the reflected input port. By occasionally recording two consecutive limb emission measurements at the same pointing angle (usually at a high limb angle of +10°) against first the hot and then the cold blackbody a calibration is achieved, since the difference between the two measured spectra is just the difference between the two blackbody sources of known radiance.

3.3 Scanning mechanism of the FTI

The two foldings that are present in the optical path of the interferometer provide an optical configuration which is fully compensated for tilt of the moving mirror and is compensated in one direction for lateral shift (Carli, 1989). The scanning of the moving mirrors is implemented with a compact pantograph mechanism that moves the mirrors simultaneously in both arms of the interferometer so that as the path to MMA increases, the path to MMB decreases and vice versa (see figure 7). The combination of the mechanical doubling of the effective optical path together with the beam folding provides a long optical path difference (125 cm), for only a small mirror stroke (15.6 cm) in a compact instrument. Furthermore, the momentum compensated motion can be efficiently performed by a torque motor on a central axis of the pantograph (Barbis, 1994, Brotini, 1993). A constant mechanical offset is present in one arm of the interferometer so that single sided interferograms can be recorded to exploit the maximum path difference available for spectral resolution.
The motion of the torque motor is controlled using a resolver mounted on the second central axis of the pantograph in a servo loop. A digital control of the angular speed provides a constant linear mirror speed.

Figure 8 shows the speed distribution, as measured by laser fringe time intervals with the laser interferometer (see next section), during an interferometric sweep performed in a quiescent condition on the ground (narrow distribution). For comparison an interferometric sweep performed in perturbed flight conditions is shown in the broader distribution. From a gaussian fit of the two distributions we obtain an rms speed error of ±2 % on the ground and of ±5 % in flight conditions. As will be discussed in section 3.6, the speed error observed in flight conditions causes a sampling error of negligible amplitude.

### 3.4 Laser interferometer

A laser interferometer is used to determine the regular spatial sampling of the optical path difference. Figure 9 shows the optical arrangement of the laser interferometer, which is a four channel homodyne system, using polarising optics. The reference source is a frequency stabilised He-Ne 632.8 nm laser (model 117-A by Spectra Physics) with a frequency stability of $1:10^8$ (±2.0 MHz per hour). The optical path of the laser beam is parallel to the far-infrared collimated beams and uses optical components that are rigidly connected to the far infrared components but optimised for operation in the visible region.

The vertically polarised laser beam is split by the amplitude Beam Splitter (BS) into both arms of the interferometer. Subsequently, all the reflections encountered in the interferometer involve planes of incidence which are either parallel or perpendicular to the direction of polarisation of the beam so that no change is introduced in the state of polarisation. The fixed roof top mirrors introduce lateral offsets in the returning beams so that they are separated from
the input. Before recombination at the beamsplitter, one beam passes through the half-wave plate (HWP), which rotates its plane of polarisation by 90°. The beamsplitter produces two outputs in which the two beams that travelled in the two arms of the interferometer are superimposed but polarised in orthogonal directions. In one output of the interferometer a quarter-wave plate, QWP, that has its fast axis parallel to one of the polarisations, introduces a further phase delay of 90° between the two planes of polarisation, which is equivalent to an additional path difference delay between the two beams. The two outputs of the beam-splitter are further divided by the polarisers P1 and P2 whose axes are orientated at 45° to the two orthogonally polarised beams. At P1 and P2, the components of these beams resolved along the polariser 45° direction are transmitted and those resolved perpendicular to the polariser are reflected. As the planes of polarisation of the outputs from P1 and P2 are necessarily parallel, interference can now take place between the two beams that travelled in the two arms of the interferometer. The four interfering signals are measured by four detectors. Different interference patterns exist in the four outputs. The reflected and transmitted outputs of each polariser are in anti-phase. Further, there is an additional 90° path delay between the outputs from P1 and P2 because of the QWP.

The anti-phase outputs from P1 or P2 can be combined to eliminate the DC level. The resulting signal from detectors(4-3) provide a measurement of the path difference increment, whilst the quadrature output from detectors(2-1) provide information on the direction of the motion. The capability of distinguishing the direction of motion makes it possible to have an absolute knowledge of the drive position and so to have a reproducible sampling grid. The laser interferometer provides a measurement of the optical path difference to an accuracy of 10 nm, equal to a fraction of the laser wavelength.

3.5 Cryostat and cold optics and detector module
The optical elements of the CODM are cooled to 4 K in a custom-made cryostat with a cold base-plate diameter of about 200 mm for which the optical scheme has been described above (see section 2). A range of photodetectors are available to give good coverage for frequencies between 50 and 500 cm$^{-1}$ (e.g. stressed Ge:Ga for 50 - 120 cm$^{-1}$, Ge:Ga for 120 - 200 cm$^{-1}$, Ge:Be for 200 - 350 cm$^{-1}$, Si:Ga for 330 - 500 cm$^{-1}$), whilst bolometric detectors are necessary for lower frequencies (10 - 50 cm$^{-1}$). The temperature requirements for the photoconductive detectors are such that operation from the Helium-4 bath (temperature range 1.6 - 4.2 K) is ideal, whereas for bolometric detectors much lower temperatures are required (typically 0.3 K) for optimum sensitivity.

The bolometric detector Noise Equivalent Power (NEP) requirement is that non-photon noise sources should not contribute significant noise compared to the fundamental photon noise. As we shall see in the section 6, this requires the NEP $\leq 1.0 \times 10^{-15}$ W.Hz$^{-1/2}$. Further, its audio speed of response should extend to 200 Hz to allow signal frequencies to be at frequencies above any inherently low frequency noise in the aircraft environment, microphonic or Electro-Magnetic Interference (EMI), and to allow data to be recorded in a timely way with respect to the aircraft forward motion. The usual trade off between sensitivity and speed of response for a bolometric detector dictates that we need to cool it to 0.3 K to reach these operating parameters. Such a temperature can easily be achieved using helium-3 adsorption systems. For SAFIRE-A we have therefore developed two CODM systems assembled in two identical cryostats, the first of which uses two photoconductive detectors for all frequencies above 50 cm$^{-1}$ and the second of which utilises a small helium-3 stage insert on one channel to enable the use of a bolometric detector simultaneous with a helium-4 cooled photodetector in the second channel. It is this variant which is shown in
Figure 3. Operationally the cryostats with the different CODM’s can be exchanged between flights enabling a host of species to be observed in the far-infrared.

Laboratory measurements of the longwave bolometer response indicated that the above required NEP and response bandwidth were met. The high frequency channel achieved a Detector Quantum Efficiency (DQE) of 8% (this was also background photon noise limited). Operationally the helium-3 system took 1 hour to cycle after which it stayed at 0.3 K for over 24 hours. The helium-4 and nitrogen dewars lasted for over 30 hours each, so the cryostat only needed attention once per day and did not interfere with the flight preparations in any way.

3.6 Flight electronics and data recording

The power supply is provided by the aircraft but can also be delivered through a dedicated ground link for test operations. Other links with the aircraft include a dedicated analogue link for acquisition of the roll signal from the ANS, housekeeping data on the flight, input on the status of the shutter in front of the window of the instrument, and output on the status of the instrument.

The pilot controls the instrument by way of the power supply and the shutter, and verifies through two monitoring lights that normal operations are in progress. No active control is required from the pilot.

The instrument is controlled by a Central Electronics Unit (CEU) which can select the instrument operation (either stand-by or active), and the measurement sequence according to instructions that are pre-stored on the ground and are implemented according to a time
sequence that can be activated either by the internal clock or by the status of the window shutter. For each interferogram the following parameters are chosen: scanning speed of the interferometric sweep, spectral resolution, detector gain, limb scan angle and the calibration blackbody.

When all the instrument settings are implemented a command is issued to scan the servo drive of the FTI. The drive implements a motion at constant speed between two commanded positions. Constant speed is preceded by an acceleration ramp and is followed by a deceleration ramp. During the constant speed section the interferogram is sampled when the fringe counter passes through each point of the sampling grid. Therefore, the FTI operates in rapid-scan mode with equal space sampling. The scanning speed can be chosen from one of the values indicated in Table 1 so that the spectral bandwidth observed by the detector can be transformed into different electrical bands that are consistent with the detector speed of response. A constant sampling frequency of about 4 kHz is used with all sampling speeds, so the sampling interval is scaled with the drive speed which results in a variable Nyquist frequency and a variable number of interferogram points as shown in Table 1.

The signals of the two detectors are preamplified by dual-JFET amplifiers. The first-stage JFET pairs are located inside the cryostat, the second stage and its battery power supply are mounted as close as possible outside the cryostat. The pre-amplified signals are further filtered and amplified by an analogue unit which conditions the signal prior to 16 bit Analogue-to-Digital Conversion (ADC). The analogue unit exchanges information with the rest of the electronics through fibre optics links and receives electrical power through dc-dc converters so that the detectors can be fully isolated from external electrical perturbations. Sampling of the signal by the ADC is commanded by the asynchronous strobe provided by
the laser fringe counter after individual time delays have been introduced to compensate for the time constants of the detectors and of the electrical filters. This delay compensation is important because in the case of equal space sampling the sampling error is equal to the speed error multiplied by the uncorrected part of the time delay. In Section 3.4 we have seen that in flight condition a ±5% speed error was experienced with a scanning speed of 5 mm/sec corresponding to an absolute error of 0.25 mm/sec. The delay compensation can be selected with a resolution of 10 microsec. In the case of narrow band observations no significant dispersion is expected in the time delay of the electrical signal and the resolution of the delay compensation is the only error in the time domain. The sampling error caused by the mirror drive is therefore equal to 2.5 nm, which is less that the sampling error of 10nm from the laser interferometer. The total sampling error is therefore negligible in comparison to the wavelengths (> 50 µm) at which the instrument operates. The interferograms and path difference signals, together with aircraft housekeeping data (flight parameters), the instrument housekeeping data (temperature sensors, laser container pressure, etc.) and data on the status of electronic systems and servo mechanisms are collected in a recording frame and asynchronously stored by an onboard Instrument Recording System (IRS). The recording system is a commercially available aircraft-compatible optical disc recorder with a single side disk capacity of 0.65 Gbytes. With a total data rate of about 30 kbytes s⁻¹ this allows continuous operation for up to 6 hours (a typical Geophysica flight was ~6 hours).
4. Instrument structure

The mechanical structure of the SAFIRE-A spectrometer consists of a single box containing all the instrument subsystems. The base-plate of the box provides a rigid optical bench on which the optical components are assembled. This plate is suspended from the body of the aircraft by means of three columns which are attached to the aircraft via anti-vibration mounts. The external walls of the box are made of honeycomb panels that limit the thermal and EMI exchange of the instrument with its environment, but do not provide any pressure control. The dimensions of the overall system are 880x1800x650 mm and the present total weight (which includes current test instrumentation) is about 400 kg.

The instrument is installed in an unpressurised bay beneath the cockpit by suspension from the aircraft airframe (see figure 10). The viewing window is located on the right side of the aircraft with respect to the flight direction. A mechanical shutter in front of the viewing port protects the input optics during ascent and descent and is opened by the pilot when the aircraft reaches the flight altitude.

Access to the instrument for ground operation is possible through a removable hatch on the left side of the aircraft. Replenishment of the cryogenics in the cryostat containing the CODM requires that this hatch is opened after the flight and the cryostat is removed for servicing. Since the cryostat can operate unattended for over 24 hours this activity only has to be performed once per day.

In order to limit the possible cooling of the instrument during the flight, two heaters are mounted on the base-plate (actively servoed by temperature sensors) and radiative exchange is reduced by aluminium foil wrapped around the instrument. Mechanical vibration of the
instrument is reduced by the anti-vibration mounts (see also section 3.1) and acoustic noise due to air turbulence entering the instrument cavity through the viewing port is kept to a minimum by placing a limiting aperture at the focal plane of the input telescope.
5. Qualification tests

Ground and flight tests were carried out to qualify the SAFIRE-A spectrometer for flight operation on board the M55 Geophysica aircraft and to characterise the instrument environment.

The mechanical structure of the instrument and its interface with the aircraft were tested by means of a flight payload simulator of the spectrometer (mock-up). The SAFIRE-A mock-up was built to be used as a mass and thermal model of the instrument, having exactly the same weight, dimensions, power dissipation, mechanical structure and interfaces as the real instrument. The mock-up passed the vibration and shock tests performed at ENEA - Casaccia laboratories in accordance with RTCA/DO-160C standards.

Subsequently the mock-up was installed on the aircraft and used for some flight tests during which the vibration levels at the attachment points and inside the instrument, as well as the temperature at different locations inside the spectrometer box, were measured. These measurements confirmed that the instrument environment is less severe than the environment of the payload bay because of the weak thermal and mechanical linkage.

EMI tests and environmental tests (pressure and temperature) were finally performed on the flight instrument. Both tests were satisfactory after some minor improvements of the filtering at the electrical interfaces.

6. Instrument performances during the APE Arctic campaign.
During the Rovaniemi arctic campaign in winter ‘96/’97 the SAFIRE-A instrument operated in all seven M55 Geophysika missions. Here we present typical housekeeping data for some of the key environmental parameters recorded during the flights along with sample data which is used to compare the instrument performance with expectations.

6.1 Temperature

Figure 11 shows the instrument temperature during a typical flight. In the figure we have labelled the most significant events (take off, shutter open, landing) which would affect the thermal behaviour of the instrument environment.

The only significant thermal loss path is via heat conduction through the antivibration mounts. However, the large thermal inertia of the instrument along with its thermal insulation and the electrical heating in both the electronics and some localised thermal control units maintains the instrument temperature above -5°C (see upper curve of Figure 11) which is measured near the central beamsplitter (M4), although the external temperature drops below -70 °C (lower curve in Fig 11). The intermediate curve of Figure 11 shows the temperature of the limb scanning mirror compartment which is most exposed to the external environment and is almost ten degrees lower than the central instrument temperature. The temperature drop when the shutter opens is clearly visible in the data.

It is therefore evident that there were no severe temperature excursions and indeed the operational range is well within the capabilities of most laboratory instrumentation.
6.2 Vibration levels

Mechanical vibrations inside the instrument were measured during the engineering flights using accelerometers in the mock-up instrument. No accelerations greater than 0.1 g rms were observed at the instrument for the three axes. During the flights with SAFIRE-A no direct measurements of the accelerations were made, but several key systems were monitored for the effects of vibration as follows:

- Significantly, no change was observed in the detector noise from laboratory to flight conditions indicating that the differential amplifiers and cold stage kevlar thread supports were effective in eliminating any residual effects.

- As shown previously, in Figure 8, the accuracy of the mirror drive was degraded in flight by low frequency oscillations that introduced additional errors into the uncertainty of the mirror position. However, the overall amplitude of the resulting error envelope was acceptable for the effective time-delay compensation and long wavelengths sampled in SAFIRE-A.

- There was no increase in the jitter of the limb scanning mirror during flight greater than the 20 arcsec sensitivity resulting from the limitation of our angular measurement system.

- A major problem was encountered with the beamsplitter. Two beamsplitters were available for the APE flights: a free standing wiregrid polariser with 10 µm thick wires and 25 µm spacing, and a photolithographic polariser with 2 µm spacing deposited on a
1.5 μm mylar substrate. Fig. 12 shows a comparison of the central portion of interferograms recorded with the two beamsplitters. A good quality interferogram is obtained with the wire grid beamsplitter, whilst large distortions are observed with the photolithographic beam divider. The distortions are due to path difference variations introduced by oscillations of the plane of the beamsplitter. The fact that only the substrate mounted beamsplitter had this problem indicates that the oscillations are caused by acoustic noise rather than mechanical vibrations transmitted through the mount. In order to eliminate this problem we plan to implement a better acoustic isolation of the FTI compartment from the limb scanning mirror compartment, and thus reduce the transmission of turbulence caused by air flow across the open window aperture in future flights. During the Rovaniemi campaign this problem required the use the free standing wire grid polariser which limited the use of the instrument to the low frequency channel.

6.3 Spectral Resolution

SAFIRE-A has a theoretical spectral resolution, defined by the Nyquist theorem, equal to 0.004 cm\(^{-1}\), which corresponds to an Instrument Line Shape (ILS) with a Full-Width at Half-Maximum (FWHM) of about 5x10\(^{-3}\) cm\(^{-1}\). Fig. 13 shows an isolated atmospheric feature in a spectrum observed at +10° above the horizon. The feature is sufficiently narrow and weak to be a good approximation of a Dirac delta function source so the measured line should approximate to the ILS. The measured FWHM of this feature is 6x10\(^{-3}\) cm\(^{-1}\). Considering that the ILS is broadened by the finite solid angle of the instrument and that the measured FWHM is also affected by the finite width of the selected feature, the observed linewidth verifies the near theoretical performance in terms of spectral resolution.
6.4 Instrument stability

As stated in Section 3.2, the calibration process involves the subtraction of two consecutive scans referenced against the cold and hot blackbody sources respectively. As a check on the calibration reproducibility we have compared in figure 14 the calibration scale for scans recorded at a 17 km altitude, with scans recorded later at a 20 km altitude, where both the ambient temperature and pressure have changed.

This responsivity curve characterizes the shape and width of the bandpass filter used in front of the detector to limit the photon noise. The good overlap of these plots verifies the good stability of the instrument responsivity as a function of ambient temperature and pressure changes.

6.5 Signal to Noise

The Signal to Noise ratio (S/N) of the spectra is defined as the ratio of the signal of the largest atmospheric emission (equal to about the emission of a 210 K black body) divided by the rms of the noise measured in regions with no signal. The the r.m.s. noise is less than 0.5 K and the S/N of the observed spectra is greater than 500:1.

Figure 15 shows the reproducibility of 6 calibrated spectra measured at the same limb angle (horizontal direction) during a 20 min period in which the aircraft flew at constant altitude.
(20 km). The figure shows both the superposition of the spectra and their standard deviation. The rms of the variation, shown in an expanded scale in the lower panel, is due to detector noise, calibration errors and variation of the source. Larger variations are observed at those frequencies where atmospheric lines are present confirming that the main source of variation is the source variability rather than measurement error. The measurement error is however expected to be the dominant cause of variation at low and high frequencies where the instrument responsivity decreases.

6.6 Comparison of the signal to noise with values expected from a model

Ideally, the detector requirement is that it should be limited by the photon noise fluctuations arising from the signal power detected in the observation band rather than photon noise from the residual instrument emission. Here we develop a simple spreadsheet model for the noise power sources as seen by the detector.

Basically the detector views the atmosphere in a narrow wavelength band determined by the bandpass filter at the detector. The power incident from frequencies outside of the filter passband is essentially zero, as the filter is at 4 K. The power in the passband from the atmosphere is however attenuated by the instrument inefficiencies but, because the instrument is at ambient temperature, it will also emit power to the detector. This instrument emission will degrade the detector performance whether or not it is interferometrically modulated because the incident power will be associated with an increase in the photon noise level. To model the expected S/N ratio we estimate the power from the different sources (the atmosphere, the second port, the instrument and the detector), and determine the
photon noise resulting from the aggregate power. The S/N is the atmospheric signal power $S$ that is interferometrically modulated divided by the total photon noise.

The radiant power arriving at the detector from a source is given by:

$$P_{\text{SOURCE}} = A\Omega \varepsilon_{\text{source}} t_{\text{opt}} B(\bar{\nu}, T) \Delta \nu$$

where $\bar{\nu}$ is the band centre in wavenumber, $T$ is the source temperature, $\varepsilon_{\text{source}}$ is the emissivity of the source, $t_{\text{opt}}$ is the optical efficiency of the optics located from the source to the detector, $B$ is the Planck function, and $A\Omega$ and $\Delta \nu$ are respectively the bandwidth and the throughput with which the source is observed by the detector. The interferometric modulation of the source flux reduces the detected signal further so that the actual signal detected is given by:

$$P_{\text{DETECTED}} = \phi_{\text{mod}} A\Omega \varepsilon_{\text{source}} t_{\text{opt}} B(\bar{\nu}, T) \Delta \nu_{\text{res}}$$

where $\phi_{\text{mod}}$ is the interferometric modulation factor of the FTI which include optical, interferometric and electrical efficiencies and $\Delta \nu_{\text{res}}$ is the source spectral bandwidth resolved in one spectral element. The photon noise contribution to the detector NEP arising from the radiant power $P_{\text{SOURCE}}$ incident at the detector depends on the type of detector used. For a photoconductive detector of quantum efficiency $\eta$ the photon shot noise dominates, so it can be estimated from:
\[ \text{NEP}_{\text{phot}} = \left( \frac{2\hbar c \nu P_{\text{SOURCE}}}{\eta} \right)^{1/2}. \]

For a bolometric detector, where photon wave noise must be included, it is given by (Holland, 1996):

\[ \text{NEP}_{\text{bol}} = \left( 2P_{\text{SOURCE}} \left( \hbar c \nu + \epsilon_{\text{source}} t_{\text{opt}} kT \right) \right)^{1/2}. \]

In the above equations \( c \) is the speed of light and \( k \) is Boltzmann’s constant. To estimate the S/N ratio per spectral element achievable from one interferogram which takes \( \tau \) seconds to record we use:

\[
S / N = \frac{P_{\text{DETECTED}} \sqrt{2 \tau}}{\text{NEP}}
\]

where the NEP is appropriate to either the photoconductor or bolometer. The factor of 2 accounts for the NEP being defined per \( \sqrt{\text{Hz}} \) (equivalent to an integration time of 0.5 seconds).

Using these equations we can calculate the photon noise contributions from each optical element in the beam path taking account of the expected losses in transmission to the detector. This spreadsheet model therefore also determines the overall transmission for both modulated and unmodulated signal components allowing sensitivity estimates to be made. Note that unmodulated incident radiation at the detector will contribute to photon noise whilst only those components that are interferometrically modulated will contribute to the
signal. The sensitivity is calculated in terms of the S/N ratio which can be directly compared with actual flight measurements made with SAFIRE-A. Table 2 below gives output data from the spreadsheet for the long wavelength bolometric channel centred at 23 cm\(^{-1}\) with a 1 cm\(^{-1}\) bandpass. We have calculated data for the realistic case of viewing an opaque line at the aircraft flight altitude (blackbody at about 210 K) with a reference blackbody at 273 K in the second port. The throughput for this long wavelength channel is 0.028 cm\(^2\).sterad and the FTI resolution is 0.004 cm\(^{-1}\). To appreciate how close this instrument is to fundamental limits we give data for two situations; one assumes an ideal (non-lossy) FTI, the other assumes realistic estimates for all the optical components and is for a realistic FTI.

As expected the major noise sources are the atmosphere itself and the emission from the second port calibration blackbody. The spreadsheet model shows that the instrument losses have an interesting effect, they not only reduce the signal by a factor of about 3.2, but also reduce the noise contributions by a factor of 1.7 so the overall loss in performance is only a factor of 2 (note that the noise reduction originates from losses in the CODM only). Reducing the temperature of the non-ideal FTI or of the second port source to 4 K only gives a marginal increase in performance (S/N = 1542, 1582 respectively) whereas reducing both the FTI and the second port to 4 K would give significant gain (S/N \(\rightarrow\) 2022). Clearly there is not a strong argument for cooling this type of polarising, low emissivity FTI for atmospheric studies.

The observed value of about 500:1 is satisfyingly close to our estimates above, but suggests that either we have additional losses that are not accounted for in our model or we have
additional noise in the flight data from the M55 aircraft environment. We will be taking further laboratory calibration data to understand which is most likely.

6.7 Detector non-linearities

We have used the inherent rapid scanning mode to look for detector non-linearities. If the detection system is non-linear then the quadratic component of the non-linear response causes an output at twice the audio frequency. Close inspection of the spectra near 46 cm\(^{-1}\) shows no evidence of any spectral structure above the noise level. We therefore conclude that the detector is linear for the range of signals experienced in this experiment.

6.8 Results

Figure 16 shows a limb scan sequence of calibrated single spectra. The full sequence is acquired in three minutes. We note the high transparency of the atmosphere at high limb angles and the increasing emission at progressively lower limb angles. The water vapour continuum is responsible for the rapid rise in emission in the “window” regions.

In this spectral region most of the observed atmospheric emission lines originate from ozone, along with significant emission from N\(_2\)O and HNO\(_3\) and a trace amount of ClO; line positions are marked on the figure. A clear identification of ClO will only be possible from a careful analysis of the spectral structure along with selective averaging of grouped spectra.
7. Conclusions

The SAFIRE-A instrument was successfully integrated with the M-55 Geophysika aircraft. The only problem encountered during the Arctic campaign made from Rovaniemi in winter 96/97 was that of high acoustic noise which prevented the use of the photolithographic beamsplitter and the exploitation of the second high frequency detector channel.

A novel interferometer drive mechanism with folded optics provided useful optical compensations along with reduced linear dimensions which made possible a relatively compact instrument package for a spectrometer with inherently high spectral resolution and large throughput.

The instrument also uses a new cold pupil and field stop optical configuration which allows the full exploitation of narrow band filters for the reduction of photon noise. These features along with the use of state-of-the-art detectors provided unprecedented radiometric performances in the sub-millimetre region. At about $20 \text{ cm}^{-1}$ with a 30 second measurement time the atmospheric emission spectrum is observed with an rms noise of 0.5 K (measured in brightness temperature) in each spectral element. A comparison of the measured S/N with model calculations clearly shows that during in-flight operations the SAFIRE-A instrument performed close to expectation. With some refinements and continued efforts we would expect further improvements to be forthcoming. Indeed the incorporation of yet narrower bandpass filters would give an immediate sensitivity advantage for targeted species.

This instrument makes possible the accurate observation of several key atmospheric species in the same air packet and with good time resolution along the aircraft flight path.
ACKNOWLEDGMENTS

The development of SAFIRE-A instrument was based on the support received in Italy from the Italian Space Agency (ASI) and on the international collaboration that was established with the support of the CEC Environmental Research Programme with both contract EV5V-CT94-0359 "SAFIRE-A Spectroscopy of the atmosphere using Far InfraRed Emission/Airborne", and contract ENV4-CT95-0045 "SAFIRE-A optimisation and flight qualification for APE". Support for the test flights and the arctic campaign in Rovaniemi and program co-ordination was provided by the Piano Spaziale Nazionale Ricerca in Antartide (PNRA), the CEC Environmental Research Programme with contract ENV4-CT95-0143 "The Airborne Polar Experiment (APE): An airborne study of the microphysical and chemical structure of polar stratospheric clouds" and the European Science Foundation.

In addition the German Ozone Research Programme (BMBF Grant 01L09314) provided funding for the testing of the AHRS attitude system.

The success of the qualification tests and of the campaign was possible thank to the valuable auxiliary support provided by Ente per le Nuove tecnologie, l'Energia e l'Ambiente (ENEA), the Myasishchev Design Bureau (MDB) and the Italian Air Force (Aereonautica Militare Italiana). Instrument preparations and flight operations were made possible by the assistance of many dedicated persons, including: Ravinder Bahtia, Stefano Balestri, Ubaldo Bonafè, Roberto Calzolai, Renzo Regini, Giovanni Rinchiusi, Orazio Sottile, Daniele Tirelli, Massimo Trambusti, Giancarlo Valmori, Alberto Vatteroni and Lionello Zuccagnoli.
References


• Decker, B. L., 1984, "World Geodetic System 1984", *Proceedings of the Fourth International Geodetic Symposium on Satellite Positioning*, University of Austin, Texas, 1, 69


List of Tables

Table 1 - FTI scanning parameters

<table>
<thead>
<tr>
<th>Path difference</th>
<th>Electrical /optical frequency ratio</th>
<th>Nyquist frequency</th>
<th>Number of interferogram</th>
<th>Recording time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>1</td>
<td>2000</td>
<td>128</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>2</td>
<td>1000</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>4</td>
<td>500</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>8</td>
<td>250</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 2 - FTI Sensitivity

<table>
<thead>
<tr>
<th></th>
<th>Ideal FTI</th>
<th>Realistic FTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power at detector from atmosphere in 1 cm(^{-1}) band</td>
<td>1.19 nW</td>
<td>0.47 nW</td>
</tr>
<tr>
<td>Source</td>
<td>2.12 x 10(^{-15}) W</td>
<td>0.98 x 10(^{-15}) W</td>
</tr>
<tr>
<td>Second Port</td>
<td>2.71 x 10(^{-15}) W</td>
<td>1.22 x 10(^{-15}) W</td>
</tr>
<tr>
<td>Instrument</td>
<td>0</td>
<td>1.14 x 10(^{-15}) W</td>
</tr>
<tr>
<td>Detector</td>
<td>1.00 x 10(^{-15}) W</td>
<td>1.00 x 10(^{-15}) W</td>
</tr>
<tr>
<td>Total</td>
<td>3.58 x 10(^{-15}) W</td>
<td>2.18 x 10(^{-15}) W</td>
</tr>
<tr>
<td>Signal from opaque 210 K line per resolution element</td>
<td>1.19 x 10(^{-12}) W</td>
<td>3.75 x 10(^{-13}) W</td>
</tr>
<tr>
<td>S/N per resolution element for a 30 second interferogram</td>
<td>2567</td>
<td>1318</td>
</tr>
</tbody>
</table>
**Figure caption**

Figure 1 - SAFIRE-A optical layout

Figure 2 - Limb scan mirror and calibration unit

Figure 3 - Cold Optics and Detector Module (CODM)

Figure 4 - Block Diagram showing SAFIRE-A subsystems

Figure 5 - Comparison between the roll angle measured by the Aircraft Navigation System (ANS) and the Attitude and Heading Reference System (AHRS) mounted on the SAFIRE-A base-plate.

Figure 6 - High frequency response of ANS and AHRS roll signals

Figure 7 - FTI optical configuration showing double folding of the optical path

Figure 8 - Scanning speed error distribution in the case of a quiet laboratory environment (narrow peaked distribution) and in flight conditions. In both cases a Gaussian curve has been fitted to the distribution (dotted lines).

Figure 9 - Optical layout of the laser interferometer used for path difference measurement

Figure 10 - Mechanical interface of SAFIRE-A with the M55-Geophysica aircraft.

Figure 11 - SAFIRE-A temperature during the Geophysica flight of 31:12:96. Shown are the external temperature (lower curve), temperature inside the compartment of the limb scanning mirror (middle curve), and inside the interferometer during a typical flight.

Figure 12 - Interferograms with Photolithographic and Wire Grid Beamsplitters.

The central portion of the interferogram compared for a photolithographic polariser on a substrate (curve A) and a free standing wire polariser (curve B).

Figure 13 - Full width half maximum (FWHM) of a weak narrow atmospheric feature observed in a spectrum recorded with pointing at 10° above the horizon which
provides an experimental determination of the spectral resolution of the instrument.

Figure 14 - Comparison of the instrument responsivity at 17 and 20 km flight altitudes.

Figure 15 - Reproducibility for a sample of 6 spectra of the atmospheric emission measured at the limb angle of 0° from the altitude of 20 km. The spectra are calibrated. The top curve shows the superposition of the 6 spectra, the bottom curve shows the standard deviation of the statistical distribution of the measurements with a highly expanded ordinate scale.

Figure 16 - Limb Scan Sequence of Calibrated Single Spectra. Calibrated spectra of the atmospheric emission from 20 km altitude at different limb angles. Going from the bottom curve to the top curve the spectra have the following limb angles: +10, +3, 0, 0, -1, -2, -3. Most of the observed features are due to ozone rotational transitions. The positions of features for some relevant atmospheric constituents are noted.
Figure 1
Figure 4

Figure 5
Figure 6

Figure 7
Figure 8

Figure 9
Figure 12
Figure 13

Figure 14
Brighter temperature (K)

Wavenumber (cm$^{-1}$)

Figure 15
Figure 16