

Helmholtz Climate Initiative

Regional Climate Change

Session 5 Atmospheric composition and climate: interactions from global to regional scales

Simulating the Ozone Distribution over Europe in May 2008 with a new Photolysis Module for COSMO-ART Jennifer Schröter, Roland Ruhnke, Heike Vogel

1. General information about COSMO-ART

- Regional Chemistry Transport Model (CTM) based on COSMO model of DWD (German Weather Service)
- Gas-phase chemistry and aerosol processes included
- Chemistry based on RADM (Regional Acid Deposition Model) mechanism
- Radiation transport model: GRAALS^[1]

6. Research question

It should be investigated whether chemistry modeling with a more accurate photolysis module would change chemical dominating processes within the HOx cycle. This change could lead to a shift in Ozone production rates.

2. Model version

- Domain: Central Europe, May 2008, COSMO 5.0 ART 3.0 (39 level up to 20km, horizontal resolution: 0.0625° about 7 km)
- Fixed boundary conditions for chemical tracers, prescribed emissions^[2]
 e.g. NO, CO, NO₂, SO₂.

Fig. 1: Emission of NO at ground level, date: 27/05/2008 13:00, given in units of kg/h/cell

3. Why do we need a Photolysis Module?

- Stratospheric / tropospheric chemistry is mainly driven by solar radiation, thus the photolysis rate (j-value) calculation is important for atmospheric chemistry modeling.
- Differences in j-values cause major differences in detailed results of

Fig. 3: Diagram of chemical and photolytic processes important for Ozone construction and destruction

3.0e-02

2.7e-02

2.4e-02

2.1e-02

1.8e-02

1.5e-02

1.2e-02

8.7e-03

7. Results

Fig. 4: Photolysis rates of NO₂ on the left, and Ozone (O(1 D) channel) on the right. Values in dark blue and dark green are taken from a grid point, where a low cloud was indicated, which can be seen in the grey colored liquid water path (LWP). Values in light green and light blue represent a cloud free grid point.

chemical model.

Fig. 2: Process diagram to illustrate the technical structure of Photolysis Module integration

4. What about the old Photolysis Module?

- Up to now PAPA^[3] (parametrization of photolysis frequencies for atmospheric modeling) was used
- Uses standard j-value profiles (look up table generated with STAR^[4] System for Transfer of Atmospheric Radiation)
- Correction of standard profiles of 21 species with online calculated factors (parametrization)
- Wavelength range: 270 nm up to 750 nm (not valid for stratospheric chemistry)

Fig. 5: Photolysis rates of NO₂ at 28/05/2008 13:00h at 1000 hPa, calculated with new COSMO-ART FastJX at the left, On the right, difference between old COSMO-ART simulation with PAPA and the new simulation with FastJX is shown. Impact of different cloud treatment can easily be seen.

Fig. 6: On the left: resulting Ozone VMR simulated with COSMO-ART PAPA (red) and COSMO-ART FJX (black) with respect to the liquid water path summed up over all model levels. On the right: resulting HNO₃, OH and NO₂ VMR. All results are taken from the ground level at the model grid point representing Karlsruhe.

Not accurate enough for detailed chemistry modeling

5. ... and the new?

Online coupled version of FastJX^[5]:

- Fast and accurate numerical method for calculating j-values
- Solution of radiative transfer equation (RTE) for plane-parallel isotropic atmosphere by expanding scattering phase function in Legendre and associated Legendre functions, finished by integration with discrete ordinate method (4-Gauss-Points)
- Wavelength range: 170 nm up to 850 nm
- Solar spectrum divided into 18 wavelength bins

model grid point representing runs and

8. Conclusion and Outlook

J-values calculated with COSMO-ART FJX differ from those calculated with the old PAPA module. J-Values of the O(1 D) channel of O₃ are up to ten times higher at the ground level than those of PAPA, which leads to an increase of OH production.

In addition to that, NO₂ production rates are modified too, which yield lower Ozone VMR, since HNO₃ is generated instead of a catalytic oxidation of CO which would end up in net production of Ozone.

These results have to be validated with measurements in the future.

1: Ritter, B., & Geleyn, J. F. (1992). Monthly Weather Review, 120(2). , 2: for further information please contact: heike.vogel@kit.edu, 3: Bangert, M. (2006) 4: Ruggaber, A., Dlugi, R., & Nakajima, T. (1994). Journal of Atmospheric Chemistry, 18(2), 171-210.

5: Bian, H. and Prather, M. (2002) Journal of Atmospheric Chemistry, 41(3), Wild, O., Zhu, X., and Prather, M. (2000). Journal of Atmospheric Chemistry, 37(3)

Institute for Meteorology and Climate Research