Investigation of the distribution of aerosol-forming trace gases with ICON-ART

C. Ullwer¹, R. Ruhnke¹, M. Höpfner¹, S. Johansson¹, J. Schröter¹, H. Vogel¹, M. Weimer², S. Werchner¹, P. Braesicke¹

1. Aerosol-forming trace gases
 - Trace gases (e.g. NH₃) come from different sources (anthropogenic, biogenic, biomass burning). They are oxidized to acids in the atmosphere. Some oxidized trace gases can nucleate (e.g. H₂SO₄, HNO₃ and NH₃).
 - Aerosols are important for cloud formation and radiative forcing
 - Stratospheric aerosol: mainly sulfate (60 – 80 %)
 - Tropospheric aerosol: Sulfate, nitrate, ammonium, organic and black carbon
 - Depletion of NH₃:\[NH₃ + \text{OH} + NO → \text{Aerosol}\]

 \[t = 73.75 \text{ days} \quad (\text{with } N_\text{OH} = 10^6, T = 280 \text{ K})\]

2. ICON-ART
 - Global weather and composition model
 - Gasphase reactions and aerosol formation
 - Model settings:
 - ICON-ART 2.2
 - Horizontal resolution: R2/80 (~ 40 km), Vertical: 90 levels
 - Integration timestep: 300 s
 - Output: regular lat-lon grid: 0.5°

3. StratoClim campaign
 - Duration: 20.07. – 11.08.2017
 - Location: Kathmandu (Nepal)
 - 8 successful flights with Geophysica in 21 km altitude (above the asian monsoon)
 - Measurements of transported airmasses (UTLS-region) with GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere: unique imaging Fourier-Transform-Spectrometer)

4. Proof of concept
 - NH₃ concentrations along the flightpath (OH chemistry only):

 ![GLORA measurement](image1)
 ![ICON-ART simulations only gasphase](image2)

5. Sources of NH₃
 - NH₃ from the MACCity inventory:

 ![accumulated NH₃ emissions from the ECCAD-database (July 2017)](image3)

 ![emissions by sectors: The main surface source of NH₃ is agriculture](image4)

6. Results
 - Accumulated NH₃:

 ![sum of NH₃ emissions from model output, from left to right: global and regional distribution in the lowest modellevel, vertical cross-section along the dotted line in regional plot](image5)

 Sectors with the largest contribution to the total emissions of NH₃:

 ![regional NH₃ emissions from agriculture and agricultural waste](image6)

7. Conclusion and Outlook
 - As expected the model run shows too high values in-comparison to the measurements, because NH₃ is only reduced by OH, the uptake of NH₃ by the aerosol phase and rainout/washout is yet to be implemented.
 - Distinguishing NH₃ sources by sectors helps to understand how transport processes contribute to regional NH₃ concentration differences.
 - Improved integrations using a comprehensive gas phase chemistry with coupling to the aerosol module are in preparation.
 - Air mass origins will be diagnosed using artificial tracers

carmen.ullwer@studien.kit.edu