

ICON-ART-ISO: Implementing water isotopologues into the new chemistry-transport model ICON-ART Johannes Eckstein¹, Roland Ruhnke¹, Stephan Pfahl², Daniel Rieger¹, Daniel Reinert³

' Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Herrmann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany ² Institute for Atmospheric and Climate Science, ETH Zurich, 8092 Zurich, Switzerland

³ Deutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach, Germany **ICON** (ICOsahedral Nonydrostatic) The new nonhydrostatic global modelling system (Zängt et al, 2014), jointly developed by DWD (German Weatherservice) and MPI-M (Max Planck Institute for Meteorology) Used for weather prediction and climate projections alike Local grid refinement down to a resolution of a few kilometers with 2-way coupling to global fields **ICON-ART** \rightarrow icon-art.imk-tro.kit.edu Extends ICON by Aerosols and Reactive Trace gases (Rieger et al., 2014) Simulates gas phase chemistry, aerosol dynamics and their feedback to meteorological variables → see Posters Rieger et al., X3.156, Session AS4.21 and Schröter et al., X3.66, Session AS1.21 **ICON-ART-ISO:** The implementation Implementation of HDO and H218O into ICON-ART Considering fractionation during: • Evaporation over the ocean doubling all Grid scale clouds and precipitation water species diagnostically Convection (Tiedtke-Bechtold Scheme) Not including Surface or ground water and biosphere processes Chemical interactions, e.g. stratospheric CH₄ conversion Based on COSMOiso by Pfahl et al., 2012

ICON-ART-ISO: Goals

- Somparison with CARIBIC δD samples
- Taken on 4 flights/month by the laser spectrometer ISOWAT
- Focus on tropical storms
- Haiyan (11/2013)
- Danielle (08/2010)
- (09/2010) • Igor

ICON-ART-ISO: Next steps

- Implementing fractionation in microphysics more closely resembling the 2-moment scheme
- Implementation of the processes during convection (Tiedtke-Bechtold scheme implementation of ICON)
- Finalizing the implementation of evaporation into turbulence routines

influence of land surfaces is minimal, error of neglecting them is therefore minimized

Institute of Meteorology and Climate Research Atmospheric Trace Gases and Remote Sensing

Zängl, G., Reinert, D., Rípodas, P. and Baldauf, M., The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Q.J.R. Meteorol. Soc., 141: 563–579, 2015.

