

Karlsruhe Institute of Technology

Institute of Meteorology and Climate Research **Atmospheric Trace Gases and Remote Sensing**

Simulation of the Polar UT/LS during the Arctic Winter 2015/2016 with ICON-ART

Christopher Diekmann, P. Braesicke, J. Eckstein, S. Johansson, D. Rieger, R. Ruhnke, J. Schröter, B.-M. Sinnhuber

Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Herrmann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Introduction

This study aims at the investigation of dynamical and chemical processes in polar regions during the arctic winter 2015/2016, with special focus on the Upper Troposphere and Lower Stratosphere (UT/LS). Main tools hereby are chemical and artificial tracers, simulated within ICON-ART. Appropriate tracers need to be considered in order to be able to monitor processes like catalytic ozone loss and denitrification. When analyzing polar processes a realistic representation of the polar stratospheric vortex is one of the fundamental tasks due to its influence on dynamics and chemistry in high latitudes. Results obtained with ICON-ART are evaluated against measurements from the POLSTRACC campaign and a simulation with the Climate-Transport-Model EMAC.

ICON-ART

ART (Aerosols and Reactive Trace gases) extends the global nonhydrostatic model ICON (DWD, MPI-Met) by the spatiotemporal simulation of chemical substances and aerosols. Parameterized chemical tendencies are added to the tracer-framework from ICON in order to simulate chemical tracers.

> Model setup

Simulation time: 02.12.2015 - 22.03.2016

Resolution:

horizontal: R2B06 (~ 40km), vertical: 90 levels up to 75km

Initialization: IFS-Data (meteorology), EMAC-Data (chemistry)

Forecast mode: re-initialization of dynamical core with current IFS-Data at 00 UTC, smooth transport for trace gases

Artificial Tracers

Tracers can be set with artificial values for identifying air masses and their origins. After an initialization they act as passive substances. **POLSTRACC** (POLar STRatosphere in a Changing Climate)

POLSTRACC as airborne HALO campaign has been monitoring the north polar UT/LS during the arctic winter 2015/16. The measuring time period covered the vortex phases

(Dec. '15), development consolidation (Jan. - Mar. '16), dissipation (Mar. '16)

- Scientific objectives
 - Structure of tropopause region
 - Ozone depletion
 - Polar stratosphesric clouds (PSC)
 - Cirrus clouds

Fig.1: Overview of the structure and processes within the Lowermost Stratosphere (LMS) [1].

Chemical Tracers

- $\triangleright O_3$: Inearized chemistry using a first-order taylor expansion [2]
 - lifetime-based calculation of non-linear ozone loss with $\tau_{cat} = 10d$

> height tracer for northern hemisphere:

when temperature falls below $T_{cat} = 195K$

simplified N_2O/NO_v -scheme including photolysis and oxidation of N_2O as source for reactive nitrogen (NO_v) [3]

 \blacksquare as NO_v mainly consists of HNO₃ within the polar UT/LS it can be used for HNO₃ relevant processes as de- and renitrification caused by HNO₃ containing PSCs

Simulating the Winter 2015/16

- \succ Flight analysis (Fig.3):
 - ICON-ART is able to reproduce measured profiles reasonably
 - stratospheric ozone loss is underestimated

> Polar vortex (Fig.4):

- \square N₂O in ICON-ART shows good agreement with results from EMAC (T106L90) [5]
- ICON-ART simulates a stronger vortex

\gg N2O – timeseries (Fig.5):

stronger polar subsidence in ICON compared to EMAC as comparison with passive N_2O shows, N_2O is an inert tracer for the troposphere $\sim N_2O$ -desctruction takes place for p < 100 hPa as stratospheric source for forming HNO₃ to build up PSCs

> Fig.3: Comparison between in-situ measurements (green) and

www.kit.edu

> Further steps:

Analyzing high-resolution simulations (R3B07, ~13km) for smallscale effects as tropopause folding events

• Adjusting T_{cat} and τ_{cat} for obtaining realistic polar ozone profiles Testing radiation feedback of modified ozone

Testing influence of vertical resolution

References:

[1] Rieger, D., et al. (2015), Geosci. Model Dev. Discuss., 8, 567-614 [2] POLSTRACC Official Website, Jan. 2017, https://www.polstracc.kit.edu

[3] McLinden, C. A., et al. (2000), Journal of Geophys. Research, 105, 14.653-14.665 [4] Olsen, S. C., et al. (2001), Journal of Geophys. Research, 106, 28.771-28.784 [5] EMAC-Data kindly provided by O. Kirner, KIT

KIT – The Research University in the Helmholtz Association